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ABSTRACT

The long-standing assumption of angle as the primary visual cue
used to read pie charts has recently been called into question. We
conducted a controlled, preregistered study using parallel-projected
3D pie charts. Angle, area, and arc length differ dramatically when
projected and change over a large range of values. Modeling these
changes and comparing them to study participants’ estimates allows
us to rank the different visual cues by model fit. Area emerges as
the most likely cue used to read pie charts.

1 INTRODUCTION

Pie charts encode the percentage value to be shown in angle, area,
and arc length. Until recently, angle was generally assumed to be
the main cue. By asking study participants to estimate values from
specially designed pie-like stimuli that isolated the three cues, recent
studies have cast doubt on that assumption [11, 20]. Angle by itself
turned out to be the least accurate, but there was no clear distinction
between area and arc length.

In the study presented in this paper, we take advantage of the dis-
tortions introduced by three-dimensional pie charts. Central angle
and arc length are distorted by factors of ten and more by the projec-
tion (Figures 1 and 2), which can be compared to the responses from
study participants. When using parallel projection, a slice’s area as
a fraction of the entire pie is constant and independent of the view
angle (see supplemental material for details), which separates area
in particular from the other two cues.

Figure 2 shows the distortion of the projected angle when rotating
a 30� slice around a pie chart. Compared to a 2D chart, at a 15� view
angle, the slice’s central angle increases up to three times its base
value, and down to about one quarter (for a total range of almost
12x), arc length increases to four times its base value and down to
about one tenth (for a total range of almost 40x).

We are not interested in 3D pie charts themselves or their particu-
lar properties here (though we do have some results). Rather, we use
them as a sort of model organism that allows us to study a property
we want to learn about; similar to the fruit fly in biology.

We model possible responses to stimuli as follows. Detailed
formulas are included in the supplemental materials.

1. Area Model. Since area of the slice as a fraction of the whole is
invariant to the projection, this is the same as using the original
angle or the represented percentage to determine the estimate.

2. Projected Angle Model. This model predicts that study par-
ticipants will read the value directly from the projected angle
they see. Since angle is strongly distorted by the projection,
the difference between this and the original angle model can
be detected.

3. Projected Arc Length Model. Similar to angle, arc length is
distorted by the projection. This model predicts that viewers
read pie charts using the arc on the outside of the slice, and
would thus report values proportional to it.
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Models with fewer inputs are considered better than ones with
more, which is also directly expressed in criteria for model selection
like the Akaike Information Criterion (AIC) we use below. Of the
three models above, the area model depends only on a single input,
the represented value. The other two have to take into account the
view angle and rotation of the chart around the center in addition to
the value, so both depend on three input parameters.

2 RELATED WORK

Pie charts are among the classic visualization techniques [21].
William Playfair included early versions in his 1801 Statistical Bre-
viary [15] and added them as an illustration to a statistical account
of the United States he translated [8].

Below, we briefly survey the limited literature on the perceptual
basics of pie charts, including 3D pie charts.

2.1 Pie Chart Perception and Effectiveness

Visualization books generally state angle as the method by which
we read pie charts, often without giving a reference. This dates
back to Brinton in 1914 [3], and continues with Bertin [1] and much
more recent books such as those by Robbins [17], Munzner [13],
etc. Cleveland and McGill [6] also equate their pie chart stimulus
with angle perception without questioning it, as do Simkin and
Hastie [19], and others.

The basis for the angle assumption appears to be Eells’ 1926
paper [9]. Eells conducted a study comparing bar to pie charts, and
asked his participants how they had read the pie charts. Just over
half of them stated angle as the mechanism, with the other half being
split between area and arc length. Self-reported strategies can be
unreliable, however, and would at least require additional studies to
corroborate before turning into the canonical assumption.

Skau and Kosara conducted a series of studies that cast doubt on
the angle assumption. By deconstructing pie charts into individual
visual cues, they were able to collect evidence that angle was the
least likely visual cue [20]. They also hypothesized that a pie chart
with a larger slice would lead to overestimation because its arc length
and area were larger, and found that to be the case [11]. They were
unable to differentiate between arc length and area, however.

The classic Cleveland and McGill paper [6] found pie charts
to be worse than pure bar charts, but similar to some bar chart
configurations (such as stacked bars). Earlier studies in the 1920s
had found different results, though, in particular for part-whole
judgments. Eells [9] found pie charts to be superior to bars, and
von Huhn [22] was unable to draw a clear conclusion in his studies.
Croxton et al. [7] compared a number of specific values (such as
25%, 33%, etc.) and found mixed results: in some cases stacked
bars did better, in others the pie chart.

2.2 Pie Charts in Three Dimensions

Just as with regular pie charts, the literature is mixed on their
3D brethren. Carswell et al. [5] studied 2D and 3D bar, line, and
pie charts. Only 3D line charts were found to have significantly
higher error than their 2D counterparts. Siegrist [18] later found a
significant effect when comparing 2D to 3D pie charts.

Reading values from 3D pie charts requires the understanding of
depth. A study by Lind et al. [12] showed significant error when
judging the shape of objects seen under a view angle of about 15�,
the steepest angle included in the studies reported in this paper. The



projected:  8º

projected: 92º

projected: 92º

central angle: 30º

Figure 1: An original 30� central angle projected at a view angle of
15� ranges from projected angle of 8� to 92�, depending on rotation
around the chart. Its fraction of the chart area is constant, however.

perception of slant has been shown to be unreliable when respon-
dents had to provide a numerical estimate, but quite accurate when
matching a physical replica of the angle [16].

3 STUDY

Given the model predictions, we conducted a controlled online study
to determine which model would fit participants’ responses.

3.1 Materials

Participants were shown pie charts drawn at a width of 600 pixels,
their height depended on the view angle. The following factors were
varied (see also Figure 3):

• 4 view angles: 90� (2D), 60�, 30�, and 15�

• 3 body heights: 0, 10, and 50 pixels

• 3 value ranges: < 33%, 33%�66%, and > 66%

• 3 rotations around the center of the pie

This would have yielded 4 ·3 ·3 ·3 = 108 combinations. However,
since body height does not make a difference for the 2D condition,
we eliminated height variations for the 90� case and thus reduced
the number to 90 (3 ·3 = 9 for the 2D condition plus 3 ·3 ·3 ·3 = 81
for the remaining three view angles).

We pre-generated a set of 90 pseudo-random numbers from the
range [3;97], and bucketed them into the three value ranges. During
the study, a third of the numbers were picked from each range
to ensure equal representation across values. The stimuli were
presented in random order.

3.2 Procedure

Each step showed a single stimulus and presented a 2D reference
chart with a handle that allowed the size of the blue slice to be
changed (Figure 4). Participants were asked to mirror the value they
were seeing in the stimulus on the reference chart (this direct report
is common in vision science [2]). The goal was to eliminate the
rounding effects seen in earlier studies and avoid guesses for the
wrong part of the chart.

The input chart on the right was drawn in the same colors and
size as the stimulus. The blue slice started at the 12 o’clock position
and was always shown with an initial value of 50% to avoid biasing
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Figure 2: Distortion of arc length as a multiple of the base value for a
30� slice when rotated around a 3D pie chart seen at different view
angles. Each line represents a view angle (90� is the 2D case).

90º 60º 30º 15º

Figure 3: The four view angles used in the study, shown for a body
height of 10 pixels.

towards low or high values. There was no numerical display of the
chosen percentage. Participants had to change the value before they
could advance to the next question. The study consisted of a total of
90 questions, we presented a pause screen after 30 and 60 questions.

3.3 Participants

We recruited 80 participants (43 women, 37 men) on Prolific1, an
online platform focused on running studies. A recent study showed
its results to be at least comparable to Mechanical Turk [14]. We
used Prolific’s filters to select only participants with (self-reported)
normal or corrected-to-normal vision.

Participants were paid $2.50 for participation. Study duration
was just under 14.5 minutes on average (median 12:53), resulting in
an average hourly pay of $10.42 (median $11.64).

3.4 Pilot Study

We ran a pilot study using the same stimuli but a numerical input
instead of the reference chart. We only report the results of this
pilot in Table 1, which shows that while it has higher error due to
rounding effects from the numerical input, its results are consistent
with the main study’s.

3.5 Preregistration

We decided to preregister this study2. Preregistration is becoming
a common practice in vision science, perceptual psychology, and
other fields to counter the problems of p-hacking and to increase
replicability [10]. We lay out the key points of the preregistered

1https://www.prolific.co
2https://osf.io/7y842/, also includes study data and code



Use the handle on the right pie chart to make it show the same value as on the left!

Figure 4: User interface used for the main study. The left plot is the
stimulus, the plot on the right has a handle that allows participants to
match the value being shown.

analysis below. Section 4.1 reports strictly on the results based on it,
with the following sections adding further analyses.

The preregistration is based on the pilot and lists the factors
described above, as well as the estimated percentage as the main
dependent variable. In the analysis, we give the Akaike Information
Criterion (AIC [4], Section 4.1) as the means of distinguishing the
models. We had initially included a number of regression models in
our analysis of the pilot, but realized later that other measures were
more informative. We therefore report AIC below and add the other
criteria in the further analysis.

4 RESULTS

To determine which model best fits participants’ responses, we
calculate the difference between the response and the predicted
value by each model and trial based on the stimulus’ parameters:
displayed percentage, view angle, and rotation. Below we use the
terms residual and error interchangeably for this difference.

To compare between the models, we compute two metrics across
all trials for each model. The mean average error, MAE, is the mean
of the residuals (or errors). The root mean square error, RMSE, is
the square root of the mean of all residuals, squared. RMSE is more
commonly used in modeling, but it overly weighs outliers and is not
as directly interpretable as MAE.

Table 1 shows the values for both MAE and RMSE for all models.
Since a better model leads to smaller residuals, smaller values in
both measures indicate better models. The values differ between
RMSE and MAE (which indicates the presence of outliers), but the
relationships between the different models in each are similar. And
in each case, the area model has the lowest scores.

4.1 Model Evaluation from Preregistered Analysis

Following the analysis laid out in the preregistration above, we find
that according to the AIC, the area model has the best fit, followed
by the projected angle and arc length models (Table 1).

We calculate AIC as AIC = 2k + n ln(RSS), with k being the
number of parameters in the model, n the number of data points, and
RSS being the residual sum of squares (i.e., the sum of the squares of

the residuals). RSS is closely related to RMSE, RMSE =
q

1
n RSS.

Since we use the same dataset for all three models, n is identical
for all three AIC calculations. The number of parameters k also
has a minor influence because of the large value for RSS. The AIC
values are therefore mostly determined by the residuals, which we
calculate from the uncorrected responses. They agree with the other
results (based on the corrected values) that area is the best-fitting
model, with angle second and arc length third.

4.2 Further Model Evaluation

Building on the preregistered analysis, we add additional steps here
for two reasons: the unexpected number of answers for the wrong
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Figure 5: Responses as multiples of the represented value by rotation
angle for the 15� condition. The blue line shows a LOESS smoothing
(95% CI is invisible at this size). Compared to Figure 2, none of the
expected distortions from projected angle or arc length are visible.

Pilot Study Main Study
Model MAE RMSE MAE RMSE AIC
Area 3.3 4.7 2.2 3.2 96377
Angle 5.3 7.2 4.4 6.2 98329
Arc Length 6.8 9.1 5.9 8.4 100000

Table 1: Comparing the fit of the three predictive models to partici-
pants’ responses using mean absolute error (MAE), root mean square
error (RMSE), as well as Akaike Information Criterion (AIC) for the
pilot and the main study. Both studies show area as the model with
the best fit (lowest values). AIC is reported for uncorrected values
(following the preregistered protocol), others on corrected.

slice, and the realization that the AIC is not nearly as informative as
MAE and RMSE. The key results are not impacted by this, however.

We found that despite the direct report input method, about 2.8%
(204 out of 7200) of responses appeared to be for the wrong slice.
This was due both to a few individuals responding for the wrong
slice almost half the time, and more people having responses for the
wrong slice. We corrected estimates that apparently were made for
the wrong slice, which we determined by comparing the represented
value to the estimate and 100-estimate (same as in earlier studies [11,
20]). Since there are only two slices, answering for the wrong slice
means crossing the very obvious 50% mark, which appears unlikely.

We then calculated MAE and RMSE values based on that data
(Table 1). All three indicators (MAE, RMSE, and the AIC based on
the uncorrected values) agree on the ordering of the models in the
pilot and the main study. As Figure 5 shows for the (most extreme)
15� condition, we did not observe the distortion expected from either
the angle or arc length models based on rotation of the slice.

Since MAE is a simple means of residuals (as opposed to RMSE,
which is the root of the sum of squared errors), it is easier to interpret.
Compared to area, MAE is roughly twice as high for the angle model,
and about 2.7 times as high for the arc length model.

4.3 Additional Analysis: Impact of Perceptual Factors

In contrast to the analysis above, the term error in the following
refers to the difference between participants’ estimates and the true
value, not the model prediction. We consider two types of error:
signed error is the difference between the estimate and the true value,
absolute error is the absolute value of signed error. Absolute error is
a measure of accuracy, signed error indicates bias.
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Figure 6: Absolute and signed error by view angle. Absolute error is
much higher for the 30� and 15� conditions, but does not differ from
the 90� (2D) condition when the angle is 60�.

View Angle
The obvious factor in 3D pie charts is the view angle, and we ex-
pected it to have a clear effect on people’s accuracy. Figure 6 shows
95% confidence intervals (CIs) for both signed and absolute error by
view angle. In terms of absolute error, the 90� and 60� conditions do
not differ, but the 30� and 15� ones show significantly larger error.

Signed error CIs overlap zero for all conditions except 15�, mean-
ing that there is no consistent bias. While there appears to be a
downwards trend towards shallower view angles, the confidence
interval for 15� almost touches the zero line, so we do not consider
this conclusive evidence for underestimation.

An ANOVA of absolute error confirms the significant difference
between conditions (F(3,2269) = 67.66, p⌧ 0.001), while it shows
no effect for signed error (p = 0.31).

Body Height
We did expect a visible body on a projected pie chart to provide
additional depth cues that would help people read the values more
accurately. That does not appear to be the case, however. Neither
absolute nor signed error show significant differences (p ⇡ 0.5).

Orientation
We expected the orientation of a slice to impact accuracy because it
is the second major factor in a slice’s distortion. For our analysis,
we classified rotation into three bins (Front, Back, and Side) along
45� angles from the axes (see Figure 2, inset).

Absolute error is similar for front- and back-oriented slices, but
significantly higher for slices pointing to the side. Signed error
shows a negative bias for slices pointing to the front and side (Fig-
ure 7) and indicates that there might be a positive bias for slices
pointing to the back (the CI includes zero, however). The negative
bias for side-pointing slices is expected, but the one for front-facing
ones is the opposite of our expectations (wider angle in the front).

An ANOVA confirms what the CIs show: absolute error differs
significantly between orientations (F(2,2270) = 13.49, p ⌧ 0.001),
as does signed error (F(2,2270) = 8.303, p < 0.001).

5 DISCUSSION

Our study shows area as the best-fitting model to people’s responses,
with angle second and arc length last (Table 1 and Figure 5). Given
that the earlier studies found angle by itself to show the most error
and arc length and area to be equal, this points to area as the most
likely cue. Our results clearly contradict the idea that 3D pie charts
can be read purely by the projected angle or arc length.

Design parameters such as tilt have an effect, with the 30� and
15� conditions showing significantly more error than 2D or 60�.
Subjectively, the 60� condition does not appear to be compressed,
and thus might just be read as a 2D pie chart. The more extreme
conditions are visibly distorted, however.

The error associated with slices pointing to the side is expected,
but it is interesting to note the difference in the direction of the
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Figure 7: Absolute and signed error by slice orientation. Absolute
error for slices on the sides is higher than for ones pointing forward or
back. Values for both front- and side-facing slices are underestimated.

error for slices pointing towards and away from the viewer. These
slices are identical in size, the only difference is in people’s attempt
to recover the two-dimensional shape from the (pseudo-)3D image.
They appear to expect slices in the front to be distorted by perspective
and correct for that by underreporting their size, whereas the opposite
appears to be happening for slices pointing to the back.

One possible explanation for wrong-slice responses is that users
sometimes match the part of the pie that is oriented the same way as
the blue reference slice in the input chart (which always started at
the 12 o’clock position and grew clockwise). If the gray part of the
pie starts near the top of the chart, it seems plausible to consider that
closer to the input chart.

5.1 Limitations

While we assume that the good fit of the area model means that
people use area to estimate the percentage, there is an alternative
explanation: they might be re-projecting the distorted shape into 2D
in their heads and then use any one of the visual cues to read the
value. This is consistent with the area model, since it is also the
model that simply uses the original value to predict the estimate.

However, the amount of over- and underestimation depending
on slice orientation (Figure 7) point to area: orientation should
not impact reading after back-projection. The observed bias seems
more likely to be the result of an over-correction after an estimate
that does not take the projection angle into account. It is also well
established that people’s depth perception of shape is very poor [12],
thus making it more likely and feasible to estimate area rather than
perform a rather complex shape and size estimation on a tilted plane.
The lack of an effect from body height supports this, since additional
depth cues would aid the back-projection.

The charts used in the studies presented in this paper consist of
only two slices: the one indicating the value we ask about and the
rest of the chart. Since we are interested in the visual cue that people
use to read the chart, and not pie chart effectiveness or the impact of
multiple slices, we do not believe this to be an issue.

We chose parallel rather than perspective projection to render the
charts in 3D to separate the predicted effects of the different mod-
els, which would have been much more complex using perspective
projection (and we were not interested in 3D pie charts per se).

6 CONCLUSIONS

Our study points to area as the visual cue used to read pie charts. It
is consistent with previous work preferring angle over arc length and
area. We believe that modeling responses and comparing to study
results is an interesting approach to study design that could be more
commonly employed in visualization studies.

While this study suggests that the charts are read by area, it
is not conclusive. In particular, the possibility of pie chart users
re-projecting the chart to read them cannot be ruled out. Further
experiments are therefore needed to zero in on the exact mechanism
by which this common chart type is read.
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