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Fig. 1. Pictographic charts have been used for decades. (A) Which chart above most effectively conveys information? Which data is 
easiest to remember during a demanding task? Which is most engaging? (B) How integrated must a pictograph be to benefit the 
user? Do purely decorative background images offer the same benefits as simple axis labels? Or must they be used to convey data?

ABSTRACT 
Although the infographic and design communities have used 
simple pictographic representations for decades, it is still un-
clear whether they can make visualizations more effective. 
Using simple charts, we tested how pictographic representa-
tions impact (1) memory for information just viewed, as well 
as under the load of additional information, (2) speed of find-
ing information, and (3) engagement and preference in seek-
ing out these visualizations. We find that superfluous images 
can distract. But we find no user costs – and some intriguing 
benefits – when pictographs are used to represent the data. 
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INTRODUCTION 
The International System Of TYpographic Picture Education 
(ISOTYPE) uses simple pictographic elements to convey 
many types of information, including numerical data. Otto 
and Marie Neurath defined the term in the 1920s [21], though 
this type of chart was first described by Willard Brinton in 

1914 [6]. Together with Gerd Arntz, the Neuraths created 
many ISOTYPE designs over several decades [1].  

The goal was a universally understandable system for com-
municating quantities of commercial, social, or economic in-
formation (e.g., automobile production or number of children 
born per year). Symbols, each representing a fixed quantity, 
were stacked to provide an intuitive representation of a total 
amount (Fig. 2). Gerd Arntz’s pictographs – simplified icons 
with minimal color – are highly recognizable and are still 
used in signs, traffic icons, and warning labels.  

While the design community has largely embraced the sim-
ple style of ISOTYPE for pictographic embellishments 
[7, 17], the visualization and HCI communities tend to regard 
pictographs as ‘chart junk’ – a distraction from the data itself 
[24]. Here we examine how ISOTYPE-style embellishment 
affects viewer memory, speed, and engagement within sim-
ple visualizations. 

Recent work suggests that extraneous pictographic infor-
mation can indeed improve the effectiveness of visualiza-
tions. Bateman et al. found that visualizations that integrate 
data with illustrations yielded better memory of the data 
compared to minimalistic outlines of bar charts [2]. Borkin 
et al. found a related result – that people can better recall 
having seen a visualization that includes pictures [4], though 
it is not clear if they would better recall the data, per se. When 
images and clip-art are embedded in the visualization’s data 
representation, Borgo et al. found occasional impact to work-
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ing and long term memory performance for some visualiza-
tions [3]. Other work shows that embellishing data with col-
ors that are semantically consistent (e.g., blue for data about 
"oceans") can increase the speed of finding information in a 
visualization [19].  

While past empirical research has shown that pictorial infor-
mation can be beneficial, it is unclear why and when these 
advantages occur. In particular, we explore whether, and 
how, the types of pictorial cues designed by Brinton, the 
Neuraths, and Arntz might create more effective visualiza-
tions. Although past work has studied visualization embel-
lishments that contain varied degrees of color [2, 3], we omit 
color cues and instead focus on pictorial cues carried by an 
object's shape 

We tease apart several properties of ISOTYPE-style picto-
graphs in our experiments in order to identify which aspects 
lead to costs or benefits for visualizations. For example, pic-
tographs add identifiable symbols, which might increase 
memorability or engagement. Do these pictures need to be a 
part of the data, as in the examples in Fig. 2, or do they carry 
the same advantage when they merely accompany a chart in 
the background or as a label (Fig. 1B)? If the symbols are a 
part of the data, does it matter if the data value is conveyed 

by the number of stacked symbols, as opposed to the 
stretched height of a symbol, which Neurath insisted was an 
inferior cue (see Fig. 2, right)? If the design choice to stack 
or stretch matters, is that effect specific to pictographs, or 
would the same pattern emerge for simple non-symbolic 
shapes, such as a stack of circles vs. a single stretched bar 
(Fig. 1A, left column)?  

We explore these questions across a range of sample 
measures: memory for previously glanced information, 
memory under the load of seeing intervening visualizations, 
speed of data extraction, and the level of observer engage-
ment in a visualization.  
CHART VARIATIONS 
We manipulate several aspects of the charts independently 
across experiments, using the classic unembellished bar chart 
(Fig. 1A top-left) as a baseline. 

Variation: Pictographs vs. Simple Shapes  
ISOTYPE charts typically rely on pictographic representa-
tions of the real objects referred to by the data, instead of 
simple shapes like the rectangles of a bar chart. To test the 
potential costs or benefits of pictorial information, we use 
graphs with either ISOTYPE-style pictographs or simple 
shapes (see the differences across the columns of Fig. 1A). 

                   
Fig. 2. Both of these example visualizations were made by Otto Neurath, a proponent of using arrays of simple pictographs to present 
quantitative information. The left image – published in 1937 – uses rows of pictographs to visualize the number of cars, phones, and 
radios in different countries. The right image – published in 1936 – shows two visualizations of the same data. Neurath insisted that 
stretching one pictograph (top) was inferior to stacking multiple small pictographs (bottom) [21]. 



Pictographic representation may help overcome limits on 
working memory, a primary bottleneck in human reason-
ing [9]. Pictures provide multiple cues for encoding and re-
trieval of memories, providing a richer set of contextual 
'hooks' that allow for broader and deeper encoding of data in 
memory. For example, when a group of people were asked 
to memorize a list of words under water (while wearing 
scuba gear), their recall performance for the words was better 
when they were tested in the water, reactivating a rich set of 
associations between the memorized words and the sights, 
sounds, and emotions of their environment – compared to re-
calling them on land where these associations were absent 
[13]. Likewise, the imagery of pictographs may provide 
richer encoding cues, so that recalling the shape of the icon 
leads to more associations with the data, compared to re-
calling a text-based label.  

We created the pictograph stimuli by making 43 sets of ob-
ject categories. Each set contained four image-word pairs, 
chosen to reflect a category such as pets, desserts, clothes, 
instruments, or vehicles. All pictographs were black and 
white SVG files that allow for scaling (available in the 
demo).  

Variation: Stretched vs Stacked 
ISOTYPE charts typically rely on stacks of individual items 
to represent values (Fig. 1A bottom-right), instead of stretch-
ing the continuous extent of a single item. Because such dis-
cretizing of the values may itself impact performance, we in-
dependently manipulate this factor across both pictographs 
(Fig. 1A bottom-right) and simple shapes (Fig. 1A bottom-
left). We also include a pictographic representation that is 
stretched vertically instead of being stacked (Fig. 1 top-
right). We proportionally stretch the object along the x-axis 
to prevent distortion, but x-axis stretching is limited to pre-
vent objects from overlapping horizontally. 

Compared to stretching, stacking has the potential advantage 
of presenting information in a dual format – both as a height 
and as a number of objects. While the discrimination preci-
sion for size is typically better than for number [11], redun-
dant encoding of both dimensions may be beneficial. In ad-
dition, for small numbers (1-4), the visual system can employ 
a faster and more precise mechanism for number discrimina-
tion, compared to larger ranges [8, 18]. Reliance on this more 
efficient system may also free up additional memory capac-
ity for the depicted information [12]. Accuracy should there-
fore improve for small numbers of pictographs, even if each 
pictograph represents more than a single value (e.g., in Fig. 
2, right, one couple represents 100,000 marriages). 

Variation: Axis Labels 
The use of pictographs might impact the effectiveness of a 
visualization because it allows a visual association for the la-
bel of the data, or more specifically, because the picture itself 
is used as the glyph. Would pictographic symbols have the 
same impact whether they are used as legend markers, allow-
ing a visual association with the data label, or whether they 
are used as the markers that depict the data (either stacked or 
stretched)? Experiment 1 includes a condition where X-axis 

labels are replaced with pictographs (e.g., Fig. 1B bottom). 
For charts that already incorporate pictographs (stacked or 
stretched), the X-axis was left blank to prevent subjects from 
confusing the label for part of the data. 

Variation: Superfluous Imagery 
Perhaps pictographs impact performance merely because 
they affect an observer's level of engagement. While the 'axis 
label' variation partially distances the pictographs from the 
data, we also test a 'superfluous' variation that completely 
separates the pictograph from the data. One past study found 
an improved ability to recall having seen a visualization 
when it includes any form of picture in the image [4], but 
recalling the pictorial information is not the same as recalling 
the data behind it. Experiments 1 and 4 include the condition 
of a simple bar graph with a background image of the same 
category as the data but irrelevant to the dataset (Fig. 1B top).  

EXPERIMENT 1: WORKING MEMORY CAPACITY LIMITS 
Our working memory is severely limited [5, 12] and can form 
the bottleneck of our reasoning abilities. Visualizations that 
place high demand on such limited resources can be substan-
tially more challenging to analyze [15]. Here we test whether 
our pictograph variations impact working memory perfor-
mance.  

Exp 1: Methods 
Twenty-two undergraduate students (12 women) partici-
pated in this experiment in return for credit in an introductory 
psychology course. 

In each trial, subjects viewed a chart with 3 values (each ran-
domly selected from 1 to 5) for 1.5 seconds. The chart was 
then replaced with a ‘response’ screen that asked the subject 
to recall each of the values in the chart (Fig. 3). In order to 
test memory for the values for each category outside of the 
context of the graph itself, the values were queried in a ran-
dom order that did not necessarily match the left-to-right or-
dering of the categories in the graph. For example, a chart 
with A=2, B=5, and C=3 may be followed by a response 
screen asking for B, C, and A. 

The experiment was split into ten blocks – two sets for each 
of the five chart types specified below. One of each pair of 
similar blocks was in the first half and second half of the ex-
periment, so we could analyze any fatigue or learning over a 
40 minute duration (we found no change over time). Each 
block began with a brief reminder of the instructions and in-
cluded an example chart corresponding to the block’s chart 
type. Each block included trials with every combination of 
three conditions: 

• 5 Charts: 
2 Shape versus Pictograph (Fig. 1A left-right)        ×  
2 Stretched versus Stacked (Fig. 1A top-bottom)    +  
1 Stretched bar with a background (Fig. 1B top) 

• 2 Axis styles: whether the x-axis labels are pictographs or 
text (Fig. 1B bottom) 

• 2 Response styles: To avoid a potential confound of the 
text axis style matching the response text, we also vary 



whether the response screen uses pictographs or text to 
identify the input fields. 

The blocks were randomly ordered, as were the trials in each. 
Each trial was then randomly assigned one of 42 data cate-
gories. Once a category was used, it would not be reused for 
at least the next 10 trials. A 43rd category was reserved to 
show a sample chart before each block, so subjects would 
know what to expect. 

The experiment included 200 trials (2 block repetitions × 5 
chart types × 2 axis styles × 2 response styles × 5 repetitions). 
The first 5 trials were considered training and thus dis-
counted in the analysis. 

Exp 1: Analysis  
We compute error level by averaging the absolute error for 
each value in a chart. So if a chart’s values are 2, 3, 4, and a 
subject inputs 2, 5, 5, the average error for each value is 
(0+2+1) / 3 = 1. Each trial therefore yields a per-value error. 
For each result, we computed an average per subject per con-
dition and computed an ANOVA between these subject 
means followed by a Tukey HSD correction. Error bars in all 
figures throughout this paper (except for Fig. 4) show the 
standard error between subject means. All line charts show 
linear fits with standard error ribbons.  

Compensating for Individual Differences 
Fig. 4 shows the substantial differences in memory accuracy 
across subjects for the unembellished simple bar graph. 
Some had nearly perfect recall, while others were only 
slightly better than an optimal guess (the mean of the Y-axis 
range). To factor out these differences for experiments 1-4, 
we normalized each subject’s results by their performance on 
the simple bar condition. That is, all subject errors are indi-
vidually scaled such that simple bar charts have an error of 
1.0, and other values are costs or benefits relative to that 
baseline. 

Chart type analysis  
For the chart type analysis, we omit the superfluous condi-
tion (see the Superfluous pictograph section), allowing us to 
split the four remaining chart types into a 2x2 combination 
(stretched vs. stacked; shape vs. pictograph). The result is a 
more diagnostic 4-way repeated-measures 2x2x2x2 
ANOVA with chart segmentation type (stretched or stacked), 
chart depiction type (pictographic or shape), axis style (pic-
tographic or text), and response style (pictographic or text) 
as factors. As there were no interactions among any of these 
factors (all F<1), the following section examines the main 
effect of each factor. 

Exp 1: Results 

Pictographs and stacking 
As Fig. 5 shows, using pictographs instead of simple shapes 
led to no difference in error rates (F[1, 21]<1, ηp

2=0.002). 
But using stacked items was associated with reduced error 
relative to stretched items (F[1, 21]=10.0, p < 0.005, 
ηp

2=0.06). 

We were surprised at the lack of an impact from pictographs, 
having assumed that the rich perceptual encoding and engag-
ing nature of pictures would be at least partly responsible for 
any potential advantages. The striking benefit of stacking 
may be explained by the cognitive advantages for small col-
lections – the visual system has specialized mechanisms for 
enumerating small discrete quantities (4-5 or fewer objects 
[8]), and the redundant encoding of length and number may 
have proven beneficial to memory. Dividing length-defined 
objects into countable regions may have a benefit, but we 
predict that this benefit should only arise when stacks are 
smaller than 4-5 objects. The next experiment will test this 
prediction by introducing more numerous stacks of objects.  

Axis and question pictographs  
As Fig. 6 shows, using pictographs as X-axis labels resulted 
in more error for every type of chart (F[1, 21]=12, p < 0.001, 
ηp

2=0.07). Text labels may be recognized more quickly, as a 
lifetime of reading renders recognition of single words a sur-
prisingly fast and automatic process. Alternatively, text la-
bels may have led to better memory links between the label 
and the data value. Intriguingly, this advantage held regard-
less of whether the question was asked using text or picto-
graph labels, which showed no difference in performance 
(F[1, 21]<1, ηp

2=0.0003). There was also no reliable impact 
on error from the interaction of axis and question pictographs 

 
Fig. 3. In experiment 1, a chart is briefly shown then hidden. 
The response screen then appears where the subject enters the 
values. Notice that the order of the items is different in the re-
sponse screen. 

 

 
Fig. 4. Each subject's average error (difference from the correct 
values) for the simple bar graph condition with standard error 
(SE). Individual differences were large. 



(F[1, 21]<1, ηp
2=0.002). We do note, however, that these la-

bels were succinct and easy to read, which could have played 
a role in this result.  

Superfluous pictograph 
We also ran a 3-way repeated-measures 5x2x2 ANOVA with 
all five chart types, axis style (pictographic or text), and re-
sponse styles (pictographic or text) as factors. There was a 
significant main effect of chart type (F[4, 21]=9.0, p < 0.001, 
ηp2=0.08), driven primarily by the 45% larger error in the 
'superfluous' chart type condition, relative to the mean of the 
other 4 conditions, (t[138]=3.39, p < 0.001). 

As Fig. 7 shows, the addition of a superfluous pictograph –
an embellishment that did not encode any data – dramatically 
increased recall error relative to a simple unembellished bar 
chart. 

Left to right 
Memory for the left bar was substantially more precise than 
the bar on the right (F[1, 21]=15, p < 0.001, ηp

2=0.19). Look-
ing only at the simple bar chart trials, we scaled each sub-
ject’s performance on the middle and right bar based on their 
error rate for the leftmost bar. The linear regression in 
Fig. 8 (left) shows that error level increases from left to right, 
suggesting that subjects are sequentially inspecting bars from 
left to right [10, 20] rather than simultaneously perceiving 
and memorizing all of them [14].  

Maximum values 
Because the values in the data were randomly selected, not 
all charts had a maximum value of 5. Some had a lower max-
imum. Smaller ranges may allow more precise encoding in 
memory. To determine if subjects were using the entire range 
of the axis versus the range of the data, we analyzed how the 
maximum data value correlated with the amount of error. 

A linear regression graphed in Fig. 8 (right) shows that as the 
range of values increases, the amount of error increases 
(F[1, 21]=41, p < 0.0001, ηp

2=0.33). Therefore, recall from 
working memory becomes less accurate in proportion to the 

value range. The next section explores whether this effect of 
range on error exists at larger scales. 

EXPERIMENT 2: LARGER RANGES 
The visual system can quickly and precisely encode small 
quantities of items up to a maximum of about 4-5, an ability 
known as subitizing [8, 15, 18]. As the number of items in-
creases beyond that range, the visual system is forced to shift 
to either slow counting or noisy estimation. This noisy esti-
mation of large collections has slightly worse precision than 
length estimation [11].  

If the improvements in working memory performance in the 
stacking conditions of experiment 1 are due to this advantage 
for number processing in small sets of items, then when 
larger stacks (more than 5) are displayed, performance in the 
stacked condition should no longer trump performance in the 
stretched condition, which relies on length judgment. 

Exp 2: Methods 
The procedure for this experiment is identical to the first ex-
periment. The primary difference is that while the first ex-
periment only used the range 1-5, this experiment is split into 
three blocks, which use the ranges 1-5, 2-10, and 3-15. The 
sizes of the charts on the screen were identical, only the Y-
axis scale changed. We did not use a range higher than 15 
because fitting more pictographs in a limited space made 
them difficult to discern.  

 
Fig. 5. Error levels are scaled relative to 
the error level of the simple bar chart, so 
it has 1.0 error for all subjects (top-left 
point). Charts with stacked items (blue) 
produced less error than those with 
stretched items (red). The use of simple 
shapes (left) or pictographs (right) had lit-
tle impact. 

 

 
Fig. 6. For every type of chart, axes with 
text labels (purple) led to less error than 
those with pictograph labels (green). 

 
Fig. 7. An otherwise simple bar chart with 
a superfluous background image yields 
much higher error levels than an unem-
bellished simple bar chart. 

 

 

 

 

     
Fig. 8. (Left) Subjects strongly prioritized the leftmost values. 
The line is a linear fit, and the shaded region is the SE of the fit. 
(Right) As the maximum value – not the Y-axis range – in-
creased, subjects made increasingly more error. 



We excluded the axis and question pictograph conditions, 
leaving all labels as text. We also excluded the superfluous 
pictograph condition. The experiment had 144 trials (3 
ranges × 2 stacked vs stretched × 2 shape vs pictograph × 12 
repetitions) blocked by range and chart type. The first 5 trials 
for each block were considered training and were discounted. 

Due to a limited availability of undergraduate students at the 
time, this study was run as a web application via Amazon 
Mechanical Turk [16] with 30 subjects, all from the USA. It 
took an average of 35 minutes and paid 8 US dollars. 

Exp 2: Results 
We again found substantial individual differences, so we 
normalized the error levels by scaling all error values by the 
amount of error in the simple bar chart condition with a range 
of 1 to 5. Therefore all results represent an increase or de-
crease in error relative to that condition. For each result, we 
computed a mean per subject per condition and performed a 
Tukey HSD-corrected ANOVA between these subject 
means. There was no 3-way interaction between the three 
factors (F[2, 29]<1, ηp

2=0.002), and unless reported below, 
there were no significant 2-way interactions between factors. 

Replicating experiment 1 
The leftmost panel in Fig. 9 shows the amount of error for 
the 1-5 condition. This condition was very similar to experi-
ment 1, and despite not being run in the lab, it produced very 
similar results. Again, stacking has a reliably large improve-
ment on performance (F[1, 29]=25, p < 0.001, ηp

2=0.22). 
This time we found a small trend for a relative impairment 
for pictographs (F[1, 29]=3.2, p > 0.05, ηp

2=0.05), though it 
was tiny in comparison to the differences in error associated 
with different number ranges.  

Smaller vs Larger Ranges 
The panels in Fig. 9 show error levels for different Y-axis 
ranges. Although the 1–5 range shows a clear separation be-
tween stretched charts and stacked charts, an interaction be-
tween stacking and range results in the benefits of stacking 
disappearing with higher values (F[2, 29]=4.5, p < 0.05, 
ηp

2=0.29). 

Maximum value 
As with the previous experiment, the maximum value can be 
lower than the peak of the range. A linear regression of the 
error as a function of the maximum value (Fig. 10) showed 
that the maximum was correlated with error rate independent 
of the Y-axis scale (F[1, 29]=470, p < 0.0001, ηp

2=0.4). The 
lack of an interaction between the maximum and the axis 
range (F[1, 29]<1, ηp

2<0.01) supports the previous experi-
ment’s finding that people adjust their representation of scale 
based on the actual range of values, instead of the potential 
range according to the scale of the axis.  

EXPERIMENT 3: MEMORY UNDER LOAD 
The previous experiments tested memory for briefly glanced 
information, with an immediate test. Such tests might en-
courage verbalization strategies, such as repeating the legend 
names and associated numbers that are less likely to be used 
in the real world.  

 
Fig. 9. Each panel shows a different Y-axis range. The amount 
of error for each subject is scaled by their error in the simple 
bar chart condition with a range of 1-5. The difference in error 
between the stretched (red) and stacked (blue) conditions is 
clear in the smaller range (left) but not for the larger ranges. 

 
Fig. 10. The similar slopes for all Y-axis ranges show that, like 
in experiment 1, performance is correlated with the range of 
values, not just the scale of the Y-axis. 

 
Fig. 11. In exp. 3 (1-back), pictograph charts have less error. 



But a single visualization does not typically have exclusive 
access to working memory – other data and tasks intervene 
between encoding and recall. An observer might compare 
two visualizations, and readers of a news article might keep 
information from the text in mind as they examine a figure.  
Such situations may be less likely to encourage verbal coding 
of data, so that viewers rely more strongly on visual encoding 
of information.  

Experiment 3 tests how pictographs affect memory when 
memory is more crowded. When memory is crowded, similar 
information, such as a verbal code for one set of numbers and 
verbal code for a second set of numbers, interferes and be-
comes noisy or lost [12]. Pictures may help keep information 
separated by expanding the information encoding space to 
include associations with identities and shapes that do not 
mutually interfere (e.g., the stack of dog icons and the stack 
of parrot icons in Fig 1). Research on picture memory is con-
sistent with their support for rich and robust encoding – pho-
tographs can be recognized even after long time periods and 
hundreds of other viewed photographs [23], and similar 
recognition advantages occur for visualizations that contain 
rich pictorial information [4]. Therefore, experiment 3 tests 
whether pictographs will present an advantage over simple 
shapes when memory is taxed by the requirement to remem-
ber the data from an additional intervening visualization. 

Exp 3 Methods 
The procedure for this experiment is similar to the previous 
experiments but uses a 1-back design. Subjects were asked 
to remember charts with a range of 1 to 5, but they were al-
ways tested on the chart before the one that they just saw, 
introducing the need to store two charts at all times. 20 sub-
jects (12 women) participated in this experiment, which 
lasted an average of 25 minutes. This experiment was run in 
the lab, so the experimenter could confirm that subjects un-
derstood the relatively complex instructions. All subjects 
were undergraduates who received credit in an introductory 
psychology course for participating in the experiment. 

For simplicity we excluded the axis and question pictograph 
conditions, so all labels were text. We also excluded the su-
perfluous pictograph condition. 

The experiment included 160 trials (2 stacked vs stretched × 
2 shape vs pictograph × 40 repetitions) blocked by condition. 
The first 5 trials of each block were discounted to build up 
the load on memory. 

Exp 3 Results 
When memory is crowded, pictures help (Fig. 11). Using the 
same scaled measure and analysis as the previous experi-
ments, pictograph charts led to slightly less error than charts 
with simple shapes (F[1, 19]=20, p < 0.0001, ηp

2=0.06).  

Interestingly, the advantage found in previous experiments 
for stacked over stretched representations of number disap-
peared (F[1, 19]<1, ηp

2<0.01) and no interaction was found 
(F[1, 19]=2.2, p > 0.1, ηp

2<0.01). While this difference mer-
its further study, we suspect that an increase in memory 
crowding shifted the performance bottleneck, such that the 

speed and accuracy of extracting values from the graph be-
came less important than the ability of semantic memory to 
overcome competition from other datasets. 

EXPERIMENT 4: SPEED AND PERFORMANCE 
Do pictographs impact the speed of information recovery 
from a chart? Intuition might suggest that they make it easier, 
but they also might distract – and the results of experiment 
1’s axis label condition already suggest that text can trump 
pictographs in the context of a memory task. This experiment 
simulates the act of rapidly comparing the values of two 
known variables in a chart. 

Exp 4 Methods 
Subjects are presented with two targets (Fig. 12), each in the 
form of a pictograph with the corresponding name under it 
(e.g., “dog” and “parrot”). In the center is one of two ques-
tions: Which has MORE? or Which has FEWER? 

A key press starts the trial and the timer. The subject views a 
chart with three values and presses a key to indicate which 
of the two pictographs or words best answers the question. 
The third value in the chart serves to deter people from 
simply selecting the tallest or shortest bar on the graph. 

 
Fig. 12. The procedure for experiment 4. Notice that the order 
of the targets may be different from their order in the chart. 

 
Fig. 13. How quickly subjects answered a question using the dif-
ferent types of charts. There is a performance cost for including 
a superfluous background image. 



We ran 50 subjects on Amazon Mechanical Turk in 200 trials 
(5 chart types × 2 questions × 20 repetitions) blocked by 
chart type. Each subject was paid 8 US Dollars for the 30-
minute study, and all participants were from the USA. 

Exp 4 Results 
All subjects showed over 92% accuracy, allowing incorrect 
responses to be dropped from analysis without substantially 
affecting statistical power. We also collapsed across the 
‘More’ vs ‘Fewer’ condition to yield approximately 40 trials 
per chart type per subject. As with the previous experiments, 
we analyzed the results within-subject to determine the per-
formance relative to that of the simple bar charts. 

We found a main effect of graph type on response time 
(F[4, 49]=20, p < 0.05, ηp

2=0.02). A Tukey HSD-corrected 
comparison of all the graph types found that only the super-
fluous condition was significantly different from the stand-
ard bar graph (p < 0.05) as can be seen in Fig. 13.  

This result combined with the results of experiment 1 show 
that superfluous images hurt both memorability and speed of 
usability of charts.  

EXPERIMENT 5: INITIAL ENGAGEMENT 
Although speed can be an important benchmark, the aim of 
some visualizations is to make people pause and look – as is 
often the case in news articles. Designers often rely on pic-
tographs because they are thought to draw the attention of a 
reader. When perusing through a collection of articles, an en-
ticing visualization may increase the likelihood that an article 
will be inspected more closely. Will an ISOTYPE visualiza-
tion be better at capturing attention than a simple bar chart? 
We ran an experiment that simulated how visualizations are 
commonly encountered in a peripheral glimpse, as thumb-
nails among a collection of text and other visualizations com-
peting for interest. 

Exp 5 Methods 
Subjects were presented with a 3x3 grid of items (Fig. 14). 
Each item included a short title above a small, slightly 
blurred thumbnail. The thumbnail was either a set of sen-
tences about the topic from Wikipedia or a chart related to 
the topic. The subjects were given two minutes to look 
through the thumbnails. They could click whichever item in-
terested them to view the information in full screen without 
pixilation or blur. Clicking again returned them to the grid, 
where they could repeat the process. No limit was placed on 
the number or duration of views for each item. However, af-
ter the trial’s time had finished, everything was removed 
from the screen. They were then presented with a button to 
begin the next trial. 
We selected 36 topics from the previous experiments’ cate-
gories and constructed text, a bar chart, and a stacked picto-
graph chart for each. Throughout the experiment, each sub-
ject encountered each topic exactly once (9 items × 4 trials). 
A trial included 3 bar charts, 3 stacked pictograph charts, and 
3 pieces of text. We tracked the start time and duration of 
each view.  

10 subjects (4 women) participated in this experiment. Be-
cause it was implemented as a Windows desktop application, 
it was run in the lab. All subjects were undergraduates and 
were paid 5 US dollars for the 15 minute duration.  

Exp 5 Results 
We binned the first minute of viewing into one-second inter-
vals and found the portion of subjects viewing each type of 
item. Fig. 15 shows a linear fit of these results collapsed 
across trial. For the first few seconds, most are at the selec-
tion grid. However, the ISOTYPE visualization takes a quick 

(A)      

(B)      

Fig. 14. (A) An example of the selection grid for experiment 5. 
The title is readable, but the details of the content are unrecog-
nizable beyond the type of information. (B) An example text dis-
play that can also been seen in the middle right of the selection 
grid in (A). 

 

 
Fig. 15. ISOTYPE charts are best at initially engaging subjects 
to inspect information more closely. 



lead and by 15 seconds has two thirds of the views. After all 
ISOTYPE visualizations are viewed, subjects proceed to the 
other items. Because most subject viewed all the items within 
the first minute, we discounted the second minute which had 
no interesting result. 
Looking at the proportion viewing a given type of item, we 
found a main effect of item type (F[2, 9]=61, p < 0.0001, 
ηp

2=0.1) and an interaction between item type and time 
(F[2, 9]=58, p < 0.0001, ηp

2=0.08). A Tukey HSD-corrected 
comparison of item types found that the bar chart was indis-
tinguishable from text (ns) and the ISOTYPE visualization 
was substantially different from both (p < 0.0001). 
We also found no significant effect of trial number on 
ISOTYPE viewing (F[1, 9]<1, ηp

2<0.01), revealing that the 
initial interest in ISOTYPE-style charts remained consistent 
through the experiment. Not only are ISOTYPE visualiza-
tions highly effective at attracting initial attention, but new 
ISOTYPE visualizations also continue to engage. 

GUIDELINES  
Based on our findings in the studies, we suggest the follow-
ing guidelines for using ISOTPYE displays. 

(1) Superfluous pictographs are a distraction  
Pictographs do not impair the viewer as long as they are used 
to represent data. But including an unnecessary background 
image in a visualization appears to be distracting, and it may 
divert attention away from the data. Even replacing text la-
bels with pictographs makes encoding less efficient (at least 
when the text labels are unambiguous). 

(2) Redundantly code length and (small) number 
Break up large length-defined objects (such as the bars in a 
bar chart) into a few smaller items. One way of doing so is 
to use ‘Tufte-style’ gridlines [24], which are white lines su-
perimposed over a (black) bar chart. This approach divides 
the bars at regular intervals allowing a user to also make a 
number estimate rather than only a length judgment. For 
small values below 4-5, number estimation is quick and ac-
curate. However, because this performance diminishes rap-
idly for larger values, gridlines that break the bars into more 
than a few sections are unlikely to be beneficial. 

(3) Use pictographs for demanding tasks  
When working memory is under load, the data in ISOTYPE 
visualizations is recalled more accurately than with simple 
bar charts. Presenting successive visualizations of different 
information (such as visualizing sales of different products 
or showing food preferences in different regions) may bene-
fit from ISOTYPE. In spite of the additional visual complex-
ity, the information is recalled more accurately. 

(4) ISOTYPE engages readers 
Visualizations rarely exist in isolation. They are often em-
bedded among additional content such as text and other vis-
ualizations that compete for a user, reader, or viewer’s atten-
tion. ISOTYPE visualizations offer a way through this as-
sortment to engage with a potential viewer. People are in-

clined, at least initially, to direct their focus towards a visu-
alization with pictographic data compared with a simple bar 
chart or text.  

CONCLUSIONS AND FUTURE WORK 
Our initial exploration used simple visualizations with 
tightly controlled experiment parameters in hopes that this 
work can be extended to a more diverse set of contexts. For 
example, ISOTYPE visualizations have been used with mul-
tiple colors, as stacked bar charts, for fractional values, to 
represent vary large values, and with more than three bars. In 
addition, the present work uses short and abstracted tasks that 
allow exploration of a large parameter space. Future work 
should confirm that ISOTYPE visualizations help viewers 
better encode the relations and patterns in a dataset, extend-
ing beyond the encoding of data values that we tested here. 
Furthermore, because our tasks were designed to simulate 
communication of data, and not analytics, it is unclear 
whether ISOTYPE visualization would be useful for tasks 
such as search or group segmentation, which are common in 
exploration. Recent advancements in automatic pictograph 
selection [22] adds impetus to the need for a better under-
standing of how pictographs impact chart usability. 

We have four main conclusions. (1) Only pictographs embed-
ded as part of data mapping are beneficial (or at least, not 
harmful). Superfluous pictographs and label images are dis-
tracting and confusing. (2) Discretizing a bar into a collection 
of small items improves encoding and recall but only for small 
values. (3) Pictographs can help people remember information 
during demanding tasks. (4) Pictographs entice people to in-
spect a visualization more closely. 

We found no strong evidence that using pictographs to com-
municate data hurts performance on any of our tasks. Our 
work adds more evidence to the claim that not all kinds of 
‘chart junk’ are necessarily detrimental. The space of ques-
tions around the efficacy of embellishments in visualization is 
still largely unexplored, and it appears to be a fertile ground 
for further research. 

DEMO AND CODE 
Chart examples generated in D3, practice versions of the ex-
periments, and all of the pictographs are available at:  

http://steveharoz.com/research/isotype 
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