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ABSTRACT

Managing computational complexity and designing effective visual
representations are two important challenges for the visualization of
large, complex, high-dimensional datasets. Parallel coordinates are
an effective technique for visualizing high-dimensional data, but do
not scale well to very large datasets. The addition of the tempo-
ral dimension leads to more uncertainty due to clutter on screen.
Consequently, this poses a significant challenge for visually find-
ing trends and patterns that maximize insight about the underlying
time-varying properties of the data.

To address these problems, we present meta parallel coordinates,
a parallel coordinates display that is guided by perceptually moti-
vated visual metrics. These metrics describe the visual structures
typically found in parallel coordinates and thus aid the user’s anal-
ysis by providing meaningful views of the data. Since they are
computed in screen space, our metrics are computationally more
efficient than data-based metrics. Our choice of metrics is driven by
the different analytical tasks that a user typically wants to perform
with time-varying multivariate data. In particular, we have worked
with domain scientists who performed simulations of bioremedia-
tion experiments, and use their data and results to demonstrate the
usefulness of our approach.

1 INTRODUCTION

Visualization of high-dimensional, time-varying data, involves ad-
dressing the trade-off between data fidelity and visual quality: on
one hand we need computationally efficient solutions for develop-
ing data abstractions that minimize information loss, and on the
other hand, we want effective visual representations that facilitate
user interpretation of the time-varying properties. Parallel coordi-
nates are an effective technique for multivariate data analysis. But
for large, high-dimensional datasets, they are known to degrade for
thousands of data points and also beyond 10 to 15 dimensions. For
temporal parallel coordinates, current solutions are unable to con-
vey both overview and details of the changing semantics of the un-
derlying data properties. To address these problems, we propose
meta parallel coordinates, a framework for integrating dimension-
level and record-level analysis of time-varying data by focusing on
quantification of the different visual structures.

1.1 Meta Parallel Coordinates (MPC)
For a time-varying dataset D with n records, d dimensions and t
time steps, the cardinality of the dataset is given by |D| = n ∗d ∗ t.
In the context of the bioremediation dataset that we use in this work,
n = 96000, d = 10 and t = 120. So |D| = 115,200,000. For such
a high cardinality, a conventional parallel coordinates representa-
tion [10] of data dimensions on the vertical axes and the records
as poly-lines is not a good fit due to clutter and scalability issues.
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Figure 1: Meta Parallel Coordinates show the dimension-level view:
The vertical axes represent the metrics while each polyline repre-
sents the value of the metrics for a given data dimension at any given
timestep. Users can filter by a single dimension or multiple dimen-
sions by making selections in the left panel. Specific time steps can
also be selected by brushing.

To overcome these problems, we use visual abstraction in the form
of screen-space metrics for creating an effective temporal summary
that conveys the salient time-varying behavior with respect to all
the data dimensions. Using these metrics, we build a meta parallel
coordinates view (Figure 1) in which the metrics are represented by
the vertical axes and each poly-line represents the values of those
metrics for a color-coded data dimension, for a particular time step.
Thus this view serves as a meta view for the conventional parallel
coordinates display. We thus reduce the number of data points in
the meta view, to d ∗ t = 1200 data points and thus we alleviate the
scalability problem. The MPC is coordinated with the conventional
parallel coordinates view (Figure 3) that shows the data plot for
a particular time step. Interaction between the MPC and the con-
ventional view enables a user to explore the data at multiple levels
of granularity by seamlessly switching between exploring temporal
changes at the dimension level, and then looking at the details, at
the record level.

This approach of separating the dimension level view (meta par-
allel coordinates) and the record level view (conventional parallel
coordinates) is similar to that proposed by Turkay et. al. [16] who
suggested a dual analysis model involving the dimension space and
item space, by using standard statistical measures computed in the
data space. In this work we use screen-space metrics, as they are
computationally more efficient than purely data-based metrics. This
is because after the initial data transformation the screen-space met-
rics are affected by only pixel resolution and are independent of the
data cardinality.
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(c) Clumped subspaces with high relative
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Figure 2: Semantic characteristics of visual structures that we quantify with screen-space metrics.

Figure 3: Conventional Parallel Coordinates provide a record-level
view: Here color gradient applied between a selected pair of axes
(in this case, So kinetic Fe++ and kinetic S−−) and this serves as
reference frame for analyzing the dominance of low and high values
on the other dimensions.

1.2 Analytic Questions
The following high-level questions guide the design and integration
of the metrics and multiple views:

• Q1 Can we visually detect dimensions that show the most
salient patterns over a period of time?

• Q2 How do we convey temporal change and integrate that
information in different views of the data?

2 RELATED WORK

A typical problem with traditional dimension reduction techniques
like multi-dimensional scaling [13] is that transformation of data
to a different space makes it difficult for users to understand the
different patterns with respect to the original space. To preserve
data fidelity better, we adopt the approach of Turkay et. al. [16]
who suggested a dual analysis model involving the dimension space
and item space. Quality metrics [15, 12], mostly based on the data
space, in conjunction with axes-parallel projection techniques like
parallel coordinates and the scatterplot matrix have been proposed
to make the dimension selection/reduction process a user-centered
one. We propose the use of screen-space metrics [7, 18] for in-
vestigating the properties of temporal data. Screen-space metrics
are perceptually more beneficial as they are visually driven. The
use of screen-space metrics belongs to the explicit encoding cate-
gory [9] of enabling visual comparisons across objects. When used

in coordination with the actual data view, the user can relate di-
rectly to the semantics of what the he/she sees on screen. In case of
time-varying data, where one has to face multiple unknowns, this
helps in accentuating the salient features in the data [1]. Several
parallel coordinates variants have been proposed to deal with time-
varying data [2, 4, 5, 11]. Our goal is to build derived, meta parallel
coordinates views that guide the configuration of the conventional
multivariate view.

3 METRICS

The choice of metrics is motivated by Amar et al.’s recommenda-
tion [3] of general analysis tasks that a user performs with a visu-
alization. Among those, characterizing univariate distribution and
detecting hidden clusters in subspaces are relevant to this paper. Q1
and Q2 outlined in Section 1.2 are addressed by the metrics which
are the basis for designing coordinated multiple views. The com-
putation of the metrics is based on pixel-space axis histograms, in
which the frequency of a pixel bin represents the number of lines
starting or ending in the bin. The applicability of the metrics is
not restricted to parallel coordinates, they can be applied directly to
point-based representations like scatter plots.

Axis Density: Two key indicators of the nature of a univariate
data distribution are density (where, on the axis, most data values
are located) and randomness (amount of disorder among the val-
ues). For the first criterion we compute the density median from
the pixel histogram by finding the pixel coordinate of the bin that in-
dicates the median value of the distribution. Higher density median
indicates dominance of higher values on the axis, and correspond-
ingly for lower values (Figure 2b).

In terms of dispersion or data disorder, entropy [6] and variance
are popular statistical measures. While there is no direct correlation
between entropy and variance, it has been shown that entropy is
more flexible in capturing dispersion as its location is independent
of the mean, unlike variance [8]. The axis entropy is computed
based on the frequency of each pixel bin in an axis histogram. In
Shannon’s entropy formula [6] we use this frequency as the prob-
ability value to calculate entropy. The higher the entropy, the less
informative is the distribution, as it implies most values have the
same probability. The lower the entropy, the lesser uncertainty there
is, and properties, like skewness of values in certain regions can be
detected (Figure 2a).

Subspace Density: If a distribution is multimodal, the me-
dian is not an accurate estimator of density. A multimodal distri-
bution means data has a higher likelihood of being clumped (Fig-
ure 2c), i.e. highly concentrated at certain subspaces. The clumping
factor helps indicate the subspace density. To compute the clump-
ing factor we set first set a threshold value equal to the average
over-plotting for a data dimension [7]. Then we iterate over all the
pixel bins on an axis: if the frequency of a bin is equal to or greater
than the threshold, we assign the bin to a cluster; when an adja-
cent pixel bin is found with frequency lower than the threshold, the
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Figure 4: Temporal variation of entropy for FeS (iron sulfite). First one
shows uniform distribution implying high entropy, second one shows
skewness signifying low entropy and the third one shows increasing
randomness implying higher entropy.
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Figure 5: Temporal variation of density median for kinetic Fe. Domi-
nance of low values in the first one, followed by a mixture of low and
high values in the second and then again a dominance of low values
in the third one is captured by the density median.
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Figure 6: Illustration of variation of clumping factor for different time
steps: initially low clumping pattern between iron sulfide (FeS) and
uraninite (UO2) changed to higher clumping at subsequent time steps
indicated by the brushed lines.

cluster is cut off. Thus we get contiguous groups of clusters indi-
cating dense subspaces. The clumping factor is then calculated by
the sum of the number of pixel bins in all the clusters divided by
the number of such clusters. The clumping metric is illustrated in
Figure 6 where the clumped subspaces are shown by brushing. We
can see that iron sulfide (FeS) initially shows low clumping factor,
which increases in the subsequent time steps, as demonstrated by
the dense clusters.

4 META VIEW

In contrast to the conventional parallel coordinates plot that serves
as the data view, the meta view shows the values of the com-
puted metrics and enables the user to build data views from them.
The design of these views follows the visual information seeking
mantra [14]: the meta view provides a global overview of the di-
mensions, and can be used to gain insights into the data before the
user even looks at the details of the data view (conventional paral-
lel coordinates) themselves. Henceforth, we will refer to the axes
in the MPC as the metric dimensions and those in the conventional
parallel coordinates view as the data dimensions.

The three metric dimensions in the MPC are axis entropy, density
median and clumping factor; while the last one is the time dimen-
sion. As shown in Figure 1, the different colors represent the differ-
ent dimensions. Metrics are scaled globally so that values for differ-
ent dimensions are comparable: the minimum and maximum for a
given dimension for all time steps is computed first and then among
those, we find the global minimum and maximum, that are used for
scaling. There are 120 ∗ 10 = 1200 data points in the MPC. The
user can reduce the number of data points in this view by selecting
only a few data dimensions, as shown in Figure 6. The user can also
load a specific number of time steps and filter through time steps of
interest as shown in Figure 7. These interactive mechanisms help
reduce clutter due to crossing of the lines and color-mixing among
the lines.

Some temporal trends are immediately visible in the MPC (Fig-
ure 1), like kinetic sulfate exhibiting very high density and variable
clumping throughout and kinetic sulfide exhibiting high degree of
variation on the entropy and density median axes. Dimensions se-
lected from this view can be added to the time-varying conventional
parallel coordinates plot (Figure 3). In the latter view, we use a con-



Figure 7: Brushing by time steps of interest in the MPC shows the
behavior of the data dimensions with respect to multiple metrics. At
a selected time step, high clumping between kinetic sulfate, sulfide
and iron can be observed, as also the dominance of higher values
on the sulfate and lower values on the sulfide.

tinuous color gradient from blue to orange, to indicate the transition
from low to high values on an axis. The color gradient is applied
on the left axis of an axis pair selected by a user, e.g., between the
sorbed kinetic iron (So kinetic Fe++) and kinetic sulfide axes. The
axis pairwise color gradient serves as a starting point for multivari-
ate analysis: it enables one to see the multivariate behavior of the
high and low values in one axis pair, with respect to all the other
axes.

5 DISCUSSION

In this section, we describe some of the findings by the scientists,
using our tool with respect to the analytic questions, Q1 and Q2.
Finding dimensions of interest with respect to salient temporal
patterns (Q1): The scientists were particularly interested in find-
ing patterns for the sulfide compounds. The variations in entropy
and density median helped them form and confirm many of their
hypotheses. Figures 4 and 5 illustrate those for iron sulfide (FeS).
As observed in Figure 4, an initial uniform distribution on the FeS
axis is denoted by a high entropy value. Subsequently, the entropy
drops, indicated by the skewness of the values. Then again, entropy
begins to rise owing to more random patterns. The variations in
density median are shown in Figure 5 where we see the rise and fall
of the median clearly depicted by the patterns. Lower data values

dominate in the initial time steps, followed by the dominance of
higher values, and then again a drop, all of which are indicated by
the median.
Conveying both overview and details of multivariate temporal
patterns (Q2): To visualize multivariate patterns for the dimen-
sions of interest, the scientists selected specific dimensions from
the MPC to configure the conventional parallel coordinates plot.
Moreover they filtered the data points by time steps in the MPC
and visualized the behavior of multiple dimensions at a single time
step. This is shown in Figure 7. The dimensions of interest are
kinetic sulfate, kinetic sulfide, iron sulfide, kinetic iron, urananite,
and tracer bromide. In particular, the scientists were interested in
the interactions among kinetic sulfate, sulfide and iron, as indicated
by the arrows. Towards the initial part of the reaction, as shown
in Figure 7, both kinetic sulfate, sulfide iron show high clumping.
This is reflected in the dense clusters in the parallel coordinates
view. Also high sulfate values correspond to low sulfide and low
tracer bromide values, and the dominance of the low values on the
latter two dimensions is reflected by the low density median in the
MPC.
Advantages and Disadvantages: The advantages of using screen-
space metrics are that after the initial histogram generation, they are
only dependent on the screen size and independent of the data car-
dinality. Therefore for a time-varying dataset with high cardinality
such as the bioremediation dataset, the computational complexity
is significantly lowered. Moreover, compared to most of the earlier
works in the area of time-varying data visualization, our approach
is perceptually more beneficial as the visual structures are quanti-
fied by the metrics, and any structural change is also captured. The
ability to investigate properties of subspaces is another added ad-
vantage of our approach. The user is an integral part of the analysis
process as the MPC and the conventional parallel coordinates views
can be used for a seamless transition between overview and details
of temporal behavior.

One drawback of our approach is that it is currently restricted to
time-varying datasets with less than 10-15 dimensions, as a larger
number of colors for the different dimensions would be difficult to
differentiate. For datasets in which the number of dimensions is
much higher, similar colors for dimensions could be picked based
on similarity metrics [17]. Groups of dimensions that exhibit simi-
lar behavior would thus still be easy to spot in the meta views.

6 CONCLUSION

In this paper, we have proposed a framework for meta parallel co-
ordinates with multiple views that serve as an information-assisted
model for facilitating a user-centric approach towards analyzing
large, time-varying, high-dimensional data. Quantification of the
visual structures and their integration with coordinated multiple
views provides a perceptually beneficial approach towards facili-
tating efficient visual search for temporal patterns. As a next step
we will incorporate more interactive features and apply the MPC
framework on high-dimensional time-varying data from other do-
mains.
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