
Poster: Indirect Multi-Touch Interaction
for Brushing in Parallel Coordinates

Robert Kosara∗

ABSTRACT

Interaction in visualization is often complicated and tedious. Brush-
ing data in a visualization such as parallel coordinates allows the
user to select data points according to certain criteria; modifying a
brush requires a lot of effort and mode switches.

We propose the use of multi-touch interaction to provide fast and
convenient interaction with parallel coordinates. By using a multi-
touch trackpad rather than the screen directly, the user’s hands do
not obscure the visualization during interaction. Using one, two,
three, or four fingers, the user can easily and quickly perform com-
plex selections.

1 INTRODUCTION

Interaction is a common problem in visualization, in particular
when working with large and high-dimensional datasets. A com-
mon interaction technique is brushing, which lets the user select a
subset of a dataset that is then highlighted. Different views of the
same data, or even just the display of these data points in the same
view, provide insight into multi-dimensional relationships.

Brushing in parallel coordinates [3] usually means selecting a
range of values on one or more axes. There are also extensions of
this idea, such as angular brushing [1], which lets the allow brush-
ing by direction rather than location, and thus effectively brush dif-
ferent kinds of correlations.

Multi-touch trackpads are becoming more common in laptops
such as Apple’s MacBook Pro and desktop computers with Ap-
ple’s new Magic Trackpad. We propose the use of multi-touch
interaction on these trackpads for brushing in visualization. We
have developed interaction techniques for axis selection, reorder-
ing, single-axis brushing, and two kinds of two-axis brushing. In-
direct multi-touch interaction enables the user to quickly explore
the data without the effort and attention to the user interface most
conventional approaches require.

2 INDIRECT MULTI-TOUCH INTERACTION

While multi-touch interaction has received a lot of attention lately,
most of it is done by directly touching the display surface. Indi-
rect (multi-)touch interaction is rare, and tends to focus on large
surface [4] and recreating the interaction on a different surface [5].

When touching the display directly, the user’s fingers and hands
obscure the screen, making it necessary to interrupt the interaction
to properly see its results. Resuming the interaction is imprecise
and the constant switch from interaction to looking to interaction
distracts from the exploration of the data.

Indirect multi-touch interaction solves this problem by placing
thetouch surface in a different location. A small, conveniently lo-
cated touch surface also increases user comfort and reduces fatigue.

3 MULTI-TOUCH FOR PARALLEL COORDINATES

The central idea of this work is the mapping of areas on the track-
pad to axes on the display. The user can directly pick axes using

∗UNC Charlotte, e-mail: rkosara@uncc.edu

the horizontal dimension of the trackpad and select a range on an
axis using the vertical dimension. The number of fingers used de-
termines the kind of interaction.

3.1 One Finger: Select Axis, Invert
When the user moves a single finger over the trackpad, the axis
that corresponds to the finger position is highlighted. This mainly
serves as an aid to finding the right axis for brushing, but does not
change anything in the visualization. It also helps make the entire
interaction model more discoverable: if a single finger causes a
reaction, perhaps two will, as well?

In addition to selecting an axis, a single finger interaction is also
used to invert it: double-tapping on an axis turns it upside down.

3.2 Two Fingers: Brush on One Axis
Two fingers on the trackpad select a range on one axis, and brush
all the values lying in that range (Figure 1a). If the two fingers are
not perfectly aligned vertically, and perhaps even come to sit on
different axes, the axis that was previously selected with a single
finger is used for the brushing. The brush sticks to that axis until
the user goes back to one or no fingers on the trackpad (this also
persists through the three- and four-finger interactions below).

The reason for the sticking brush is that during brushing, it is
difficult to keep the fingers correctly aligned with the horizontal
region the axis occupies on the trackpad. The result would be the
brush jumping from axis to axis, which is distracting and disrupts
the interaction. It is very easy to indicate the intent to switch to
another axis by lifting one finger and selecting a different axis.

Brushing using the mouse typically means selecting a range on
an axis, which is then brushed. Some programs interactively show
the result of the brush operation during the interaction. Changing
the brush often means deleting the existing brush or at least replac-
ing it with a new brush interaction that starts from scratch. Being
able to easily change the position and size of the brush speeds up
selection and requires less attention to the interaction.

3.3 Three Fingers: Angular Brushing, Reorder Axes
Three fingers, with one on one axis and two on an adjacent one,
select angular brushing (Figure 1b). This kind of brushing does
not select based on a value range, but rather picks all data items
whose line between the axes in question is at an angle that lies in
the selected range of angles.

In the original implementation of this feature [1], the user has
to pick three points to create an angular brush: the center point for
the circle, the starting point of the arc, and its end point. This kind
of brushing is much less predictable than single-axis brushing, and
thus requires a lot more trial and error. The sheer tediousness of the
original implementation discourages users from using it.

In our implementation, the user picks one point as the center of
the circle on one axis and two points on the adjacent axis to select
the start and end points of the arc. All three points (and thus the
direction and size of the selection) can be moved simultaneously
and independently. To show the user the selection, an arc is drawn
between the axes, but without touching either of them. This is to
not imply that the selection is anchored to positions on the axes.

A second interaction that is possible with three fingers is axis re-
ordering. With all three fingers on the same axis, the user can move



(c) (d)(a) (b)

Figure 1: Multi-touch interaction for brushing in parallel coordinates: a) two fingers brushing on a single axis; b) three fingers performing angular
brushing on adjacent axes; c) four fingers independently brushing two non-adjacent axes; d) four fingers brushing adjacent axes, only lines in
the blue trapezoid are brushed. Insets show the positions of fingers on the trackpad.

the current axis to another location by sliding her fingers across the
trackpad; the other axes are rearranged accordingly. Three fingers
are more difficult to position precisely than two, but this choice also
makes accidental reordering much less likely. In typical use, the
user only reorders axes occasionally, and spends much more time
brushing.

3.4 Four Fingers: Brush on Two Axes

Four fingers are the logical extension of two fingers: brushing on
two different axes at the same time, using two fingers each. The
first brush still sticks to its axis, but the other one can be moved
around freely. There are two distinct cases here: brushing adjacent
axes and brushing non-adjacent axes.

When axes are not adjacent, the two brushes are simply drawn on
each axis separately (Figure 1c). A common problem in parallel co-
ordinates is that correlations between non-adjacent axes are hard to
see. Using simultaneous brushing on two axes, the user can quickly
explore potential correlations (e.g., how many values go from low
to high, how many from high to low) without having to rearrange
the axes (which requires a reorientation).

When the axes are adjacent, the program draws a trapezoid be-
tween the two brushed areas (Figure 1d). This trapezoid encloses
all brushed lines between the axes, and thus serves as a visualization
of the brush itself. This is similar to the brushing in the time-series
visualization tool TimeFinder [2], where users can select ranges on
different time steps that lines have to pass through to be selected.
Our approach is much more interactive, but could be easily applied
to this kind of data.

4 IMPLEMENTATION

Our prototype is implemented using Apple’s Cocoa Objective-C li-
braries, utilizing the new NSTouch class supported in Mac OS X
10.6, Snow Leopard. The only information needed are the x and y
coordinates of the touches, as well as an identifier that lets us track
individual touches across touch events.

5 DISCUSSION, LIMITATIONS

Multi-touch interaction on a relatively small trackpad clearly has its
limitations: only a small number of axes can be easily mapped and
navigated by the user, and there are limits to the resolution of the
touches as compared to the number of pixels. In practice, these do
not limit the usefulness of the technique. While a large number of
dimensions can be shown in parallel coordinates in principle, more

than ten dimensions rarely make sense at the same time. The ver-
tical resolution is also more than sufficient to pick ranges of a few
pixels on a 1280x800 pixel display. The intended use of this inter-
action, exploration, does not usually require pixel-level precision.

Stability in the interaction is extremely important. The user has
no direct way of knowing where her fingers are in relation to the
mapped axes, and thus can easily move between them. This can
cause unintended and distracting jumps in the interaction that are
frustrating and take the users attention away from the display. We
therefore keep the first selected axis constant during an interaction,
independently of the users finger position. Angular brushing only
makes sense on adjacent axes, so in this case we ignore the hori-
zontal position of the user’s fingers almost entirely.

While we have not formally studied the technique, feedback
from our colleagues (and our own experience with visualization
tools) indicates that the gained ease, speed, and immediacy of in-
teraction is extremely helpful. Most visualization tools only pro-
vide rather rudimentary interaction, and often require many mode
switches for even simple tasks. Our multi-touch interaction does
not cover all possible tasks, but it does significantly speed up the
most common ones, and eliminates the required mode switches.

6 CONCLUSIONS

Multi-touch interaction provides a new way to explore data visual-
izations, in particular parallel coordinates. The speed and ease with
which the user can navigate and find potentially interesting patterns
in the dataset facilitates exploration and analysis of data.

The source code for our research prototype is available from
http://github.com/eagereyes/ParVisMT

REFERENCES

[1] H. Hauser, F. Ledermann, and H. Doleisch. Angular brushing of ex-
tended parallel coordinates. In Proceedings Information Visualization,
pages 127–130, 2002.

[2] H. Hochheiser and B. Shneiderman. Visual specification of queries
for finding patterns in time-series data. In Proceedings of Discovery
Science, pages 441–446. Springer, 2001.

[3] A. Inselberg. Parallel Coordinates: Visual Multidimensional Geometry
and Its Applications. Springer, 2009.

[4] T. Moscovich and J. F. Hughes. Indirect mappings of multi-touch input
using one and two hands. In Conference on Human Factors in Comput-
ing Systems (CHI), pages 1275–1284. ACM Press, 2008.

[5] D. Schmidt, F. Block, and H. Gellersen. A comparison of direct and
indirect multi-touch input for large surfaces. In INTERACT, pages 582–
594. ACM Press, 2009.


