
193

C h a p t e r T w e lv e

Turning a Table into a Tree:
Growing Parallel Sets into a

Purposeful Project
Robert Kosara

Academic software projects tend to grow organically �from an initial idea

into something complex and unwieldy that is novel enough to publish a paper about.

Features often get added at the last minute so they can be included in the paper, with-

out much thought about how to integrate them well or how to adapt the program’s

underlying architecture to make them fit.

The result is that many of these programs are hacked together, buggy, and frankly

embarrassing. Consequently, they do not get released together with the paper, which

leads to a fundamental problem in visualization: reproducibility is possible in theory,

but in practice rarely happens. Many programs and new techniques are also built from

scratch rather than based on existing ones.

The optimal model would be to release the software right away, then come back to it

later to refine and rearchitect it so that it reflects the overall design goals of the project.

This is seldom done, though, because there is no academic value in a reimplementa-

tion (or thorough refactoring). Instead, people move on to the next project.

The original prototype implementation of Parallel Sets (http://eagereyes.org/parallel-sets)

was no different, but we decided that in order to get the idea out of academia into actual

use, we would need a working program. So we set out to rethink and redesign it, based

on a better understanding of the necessary internal structures that we had gained over

time. In the process, we not only re-engineered the program, but also revised its gen-

erated visualization to clarify its underlying idea.

http://eagereyes.org/parallel-sets

194 Beautiful Visualization

Categorical Data
Hundreds of visualization techniques are described in the literature (with more added

every year), but only a few specifically work with categorical data. Such data consists

of only a few values that have special meanings (as opposed to continuous numerical

data, where the numbers stand for themselves). Examples include typical census data,

like values for sex (male or female), ethnicity, type of building, heating fuel used, etc.

In fact, categorical data is crucial for many real-world analysis tasks. The data we origi-

nally designed our technique for was a massive customer survey consisting of 99 multi-

ple-choice questions with almost 100,000 respondents. People were asked questions

about consumer goods, like detergents and other household items, as well as demo-

graphic questions about household income, number of kids, ages of kids, etc. Even in

cases where it would have been possible to gather precise information (like age), the

survey combined the values into groups that would be useful for later analysis. That

made all the dimensions strictly categorical, and almost impossible to visualize using

traditional means.

The dataset we will use to illustrate Parallel Sets in this chapter describes the people on

board the Titanic. As shown in Table 12-1, we know each passenger’s travel class (first,

second, or third passenger class, or crew), sex, age (adult or child), and whether they

survived or not.

Table 12-1.  The Titanic dataset

Dimension Values

Class First, Second, Third, Crew

Sex Female, Male

Age Child, Adult

Survived Yes, No

There are really only three visualization techniques that work particularly well for cat-

egorical data: treemaps (Shneiderman 2001), mosaic plots (Theus 2002), and Parallel

Sets. The reason for this is that there is a mismatch between the discrete domain of

the data and the continuous domain of most visual variables (position, length, etc.).

Treating categorical data as if it were numerical is acceptable when all but a few

dimensions are continuous, but becomes entirely useless when all of them are categorical

(Figure 12-1). While the natural distribution of data in most numerical datasets makes it

possible to glean the rough distribution of at least the number of values, this becomes

entirely impossible when there are only a few different values that are exactly the

same between data points.

195chapter 12: turning a table into a tree: growing parallel sets into a purposeful project

Figure 12-1.  Using classical visualization techniques for categorical data: Scatterplot (left) and
Parallel Coordinates (right) lead to massive overplotting and do not provide much information
even when tricks (such as jittering the data points) are used

Parallel Sets
Parallel Sets, or ParSets (Bendix 2005, Kosara 2006), is a visualization technique that

was designed specifically for interpreting categorical data. When talking to the experts

analyzing the customer survey data, we realized that most of the questions they were

asking were not based on individual survey responses, but on classes of answers, or

sets and set intersections. How many people with more than three children under five

years of age buy brand-name detergent? Or, put differently, how many members of

Set A are also in Set B? How many first-class passengers on the Titanic survived (i.e.,

how many were in category first class on the class dimension, and in the yes category on

survived)? How many of them were women (i.e., how many also had the value female

in the sex dimension)?

This approach means that instead of plotting thousands of individual points, we only

need to show the possible sets and subsets that exist in the data, as well as their sizes.

If the numbers and relative sizes of those sets stayed the same, we reasoned, we could

even show that the technique was independent of the actual dataset size.

In addition to the idea of showing the data as sets, ParSets was heavily influenced

by Parallel Coordinates (Inselberg 2009), a popular visualization technique for high-

dimensional numerical data. The parallel layout of axes makes them easier to read

and compare than the nested structures of treemaps and mosaic plots, especially as the

number of dimensions increases. It is also easier to design effective interactions for this

kind of layout.

The first version of Parallel Sets (see Figure 12-2) was based on the categories first,

then on the intersections. For each axis, we showed each category as a box, with its

size corresponding to the fraction of all the data points that each category represented.

In terms of statistics, this is called the marginal distribution (or marginal probability).

Each axis is essentially a bar chart, with the bars tipped over rather than standing next

to each other.

196 Beautiful Visualization

Figure 12-2.  The original Parallel Sets design

Reading just the bars in Figure 12-2, it is easy to see that the crew was the largest class

of people on the Titanic, with the third class close behind. The first class was much

smaller than the third class, but was actually larger than the second class. It is also

quite obvious that there was a majority of men (almost 80%) on the ship, and that

only roughly one-third of all people on board survived.

Ribbons connect categories that occur together, showing how often, for example, first class

and female intersect, thus making it possible to tell what proportion of the passengers in

first class were women. The ribbons are what makes Parallel Sets more than a bunch of

bar charts: being able to see distributions on several axes at the same time allows the user

to identify and compare patterns that would otherwise be difficult to spot.

In the case of the Titanic, there was clearly an uneven distribution of women among

the different classes. While the first class was close to 50% female, the second and third

classes had progressively larger majorities of men. The crew consisted of over 95% men.

While the ribbons are clearly useful, they also pose some challenges. They must be

sorted and the wider ones drawn first, so that the smaller ones end up on top and are

not hidden. Also, when there are many categories there tend to be a lot of ribbons,

resulting in a very busy display that is difficult to read and interact with.

Interaction is an important aspect of ParSets. The user can mouse over the display to

see actual numbers, and can reorder categories and dimensions and add dimensions to

197chapter 12: turning a table into a tree: growing parallel sets into a purposeful project

(and remove them from) the display. There are also means of sorting categories on an

axis by their size, as well as combining categories into larger ones (e.g., to add up all

the passenger classes to better compare them with the crew).

Visual Redesign
One aspect of ParSets that required us to experiment quite a bit was the question of

how to order the ribbons going from one axis to the next. We came up with two differ-

ent orderings that seemed to make good sense, which we called standard and bundled.

Standard mode ordered ribbons only by the category on top, which led to a branching

structure but resulted in a rather visually busy display when large numbers of dimen-

sions and categories were included. Bundled mode kept ribbons as parallel as possible

by grouping them by both the top and bottom categories, which meant detaching parts

of the ribbons from one another vertically.

It was only when we started to reimplement the technique a while later and were look-

ing for a good representation of the visual structures that we realized that we had been

looking at a tree structure all along (and that standard mode was the way to go). The

entire set of data points is the root node of the tree, and each axis subdivides it into the

categories on that axis (Figure 12-3). The ribbons display the tree; the nodes just look

different than expected because we collect them on each axis to form the bars.

Figure 12-3.  The tree structure in Parallel Sets: nodes on each level are collected into bars, and
the ribbons are the connections between the nodes

We went ahead with our reimplementation without making any major changes to the

visual display, but the idea of the tree stuck in my head. So one day, I asked myself:

what if we reduced the bars and focused on the ribbons? And lo and behold, I was

looking at a much clearer tree structure (Figure 12-4).

198 Beautiful Visualization

Figure 12-4.  The new Parallel Sets design, showing the tree structure much more clearly

A simple change had shifted the focus from the category boxes to the ribbon tree. In

the new design, the boxes still appear when the user mouses over the lines (to suggest

to the user that she can interact with them), but they are only a means to an end. The

key information we are interested in is really the decomposition into subsets.

In addition to improved structural clarity, the new design also makes much better use

of typography to communicate the hierarchy of dimension and category labels and is

much more pleasant to look at.

Looking at data in terms of aggregation and sets is not a new idea. Polaris (Stolte, Tang,

and Hanrahan 2002) and, by extension, Tableau* were built on a similar idea: aggrega-

tion of individual values and decomposition into subsets. The use of treemaps for non-

hierarchical data (which is what treemaps are mostly used for today) is based on the

same transformation. Creating a tree of subsets from the data enables one to use any

hierarchy visualization to show that data. The treemap, with its emphasis on node size

rather than tree structure, is a natural choice for this.

The initial design change required only a few small changes in the program, but it was

clear from this point on (and from the rather lackluster performance of our reimple-

mentation) that the perceived need for a visual change had just been a symptom of a

fundamental design issue with the program’s data model.

*	See http://www.tableausoftware.com.

http://www.tableausoftware.com

199chapter 12: turning a table into a tree: growing parallel sets into a purposeful project

A New Data Model
In the original program, the data had been stored the way it came in: as one big table.

We later added the ability to create additional dimensions from the data, but the prin-

ciple did not change. With every change to the display, the program had to work its

way through the entire dataset and count the combinations of categories. With larger

datasets, this became quite slow and required a lot of memory.

The big advantage of looking at data in terms of sets is that the individual data points

are really of no interest; what counts are the subsets. So, the natural next step was to

look at all possible aggregations of the data into sets, which could then be used to com-

pute any subsets the user was interested in.

In statistics, this is called a cross-tabulation or pivot table. In the case of two dimensions,

the result is a table with the categories of one dimension becoming the columns, and

the other becoming the rows (Figure 12-5).

Figure 12-5.  A cross-tabulation of the class and sex dimensions of the Titanic dataset

There are two kinds of numbers in this table: counts and percentages. Each cell contains

the count of people for its combination of criteria at the top left, and the percentage

that number is of the entire dataset at the lower right. That latter percentage is called

the a priori percentage (or probability). What is generally of more interest, though, are

the conditional percentages (or probabilities), which tell us the composition of the differ-

ent classes. In the top-right corner of each cell is the chance of finding the column’s

criterion given that we know the row (e.g., how many of the passengers in first class

were women); at the lower left is the percentage likelihood of finding the row crite-

rion given the column (e.g., what percent of women were in first class).

200 Beautiful Visualization

Because the data is purely categorical, the cross-tabulation contains all the information

about it and is all we need to store. If we wanted to recreate the original data from it,

we could do that by simply generating as many rows with each combination of catego-

ries as are given by the cell. The only case where additional data is needed is when the

dataset also contains numerical columns.

A cross-tabulation for more than two dimensions is a bit more involved, but follows

basically the same principle. A high-dimensional array is constructed that has as many

dimensions as the dataset, with each cell in the array holding the count of how often

that combination of values occurred.

Unfortunately, the number of possible combinations gets rather large quite quickly, and

is actually much larger than the number of rows in most datasets. In the case of the cen-

sus data, for example, taking only the dimensions owned or rented, building size, building

type, year built, year moved in, number of rooms, heating fuel, property value, household/family

type, and household language (out of over 100 dimensions) would result in 462,000,000

combinations, while the 1% microdata census sample has only 1,236,883 values for

the entire U.S.!

The key here is that in the high-dimensional case, most combinations never actually

occur in the data. So, it makes sense to only count those that do and store only their

information. This is done in our current implementation by simply using an array of

integers to hold all the values for each row, and using that as the key for a hash table.

In almost all cases, that hash table takes up less space than the original data.

The Database Model
The database is essentially a direct mapping of the hash table that contains the counts

for each combination of categories. Each dataset is stored in a separate table, with a

column for each dimension in the dataset. Each row contains the values for the cat-

egories that describe the cell in the cross-tabulation, as well as the count of how often

that combination occurs. There is an additional field, called the key, which is unique

for each row and is used for joining the table when looking at numerical data.

Aggregating the data is done with a SQL query that simply selects the dimensions the

user is interested in plus the total counts, and groups the results by those same dimen-

sions (Table 12-2):

select class, sex, survived, sum(count) from titanic_dims
group by class, sex, survived;

The database thus aggregates the counts and returns a lower-dimensional cross-tabulation

containing only the values needed for the visualization.

201chapter 12: turning a table into a tree: growing parallel sets into a purposeful project

Table 12-2.  The result of querying the Titanic dataset to include only the dimensions class, sex,
and survived

Class Sex Survived Count

First Male Yes 62

First Male No 118

First Female Yes 141

First Female No 4

Second Male Yes 25

Second Male No 154

Second Female Yes 93

Second Female No 13

Third Male Yes 88

Third Male No 422

Third Female Yes 90

Third Female No 106

Crew Male Yes 192

Crew Male No 670

Crew Female Yes 20

Crew Female No 3

This model is very similar in principle to data warehousing and Online Analytical

Processing (OLAP). Most databases have a special cube or rollup keyword to create an

aggregation from a regular table. This has the advantage that no special processing

is needed beforehand, but the disadvantage of being slower and requiring more disk

space to store all the original values. Structuring the data specifically for fast read and

aggregation performance (as is done in data warehouses and our database schema)

considerably speeds up the most common operation at the expense of more processing

being required when new data is added.

While the ParSets program does not currently show numerical dimensions, it does

store them in the database. They are stored in a separate table, containing the key of

the row the values correspond to and one column per numerical dimension. Instead

of using the count, a simple join query can therefore be used to aggregate any numeri-

cal dimension by the cross-tabulation cells. Any standard SQL aggregation (sum, avg,

min, max) can be used for this purpose. Eventually, the program will allow the user to

select a numerical dimension to use to scale the bars and ribbons, and to also select the

aggregation used.

The current version of Parallel Sets stores its data in a local SQLite database. SQLite is a

very interesting open source database that operates on a single file. It is used in many

embedded applications and is extremely resilient against data corruption (such devices

202 Beautiful Visualization

have to expect power failure at any moment). While it does not have all the features

of commercial databases, it is small, fast, and does not require any setup. This makes it

a perfect data store that has a query language as an added benefit.

Growing the Tree
The cross-tabulation that the database stores and that can be retrieved is only a part of

the story, though. To show the user the Parallel Sets display, we need a tree. Whenever

the user changes the dimensions or reorders them, the program queries the database

to retrieve the new cross-tabulation. It then walks through the resulting data to build

the tree. If you look closely, you can actually already see it in Table 12-2. Whenever

the same value appears several times in the same column, we’re looking at the same

node of the tree, and only the nodes to the right of it change, as shown in Table 12-3.

Table 12-3.  The tree structure inherent in the query result in Table 12-2

Class Sex Survived Count

First Male Yes 62

No 118

Female Yes 141

No 4

Second Male Yes 25

No 154

Female Yes 93

No 13

Third Male Yes 88

No 422

Female Yes 90

No 106

Crew Male Yes 192

No 670

Female Yes 20

No 3

All the program needs to do is go through the result set line by line and build the tree

by following the existing nodes from left to right until it encounters a node that does

not exist yet. That node is added and its count is taken from the database row.

203chapter 12: turning a table into a tree: growing parallel sets into a purposeful project

The database contains only the counts for the tree’s leaves, though, not its internal

nodes (other databases, such as Oracle, have queries that also return internal nodes

when performing cube queries). However, it is easy enough to calculate those by sim-

ply summing the values of each node’s child nodes recursively, from the leaves to the

root node.

The counts themselves are also only the raw material of the fractions, which are cal-

culated in the same step once all counts for a node are known. To actually display

the bars and ribbons, percentages are used: the a priori percentage of each category

becomes the length of the bar, by using it as the fraction of the total width, and the

conditional percentages (the lower category on a ribbon given the upper category)

are used to determine the width of the ribbon as a fraction of the category bar length

(Figure 12-6).

40.2%

21.4% 78.6%

97.4% of crew bar width
39.1% of total width

27.8% of third class bar width
8.9% of total width

14.8%
Marginal probabilities

Conditional probabilities

Marginal probabilities

12.9% 32.1%

Figure 12-6.  The width of each ribbon represents its marginal probability (proportional fraction)
of the total data set, and also its conditional probability within each category

Parallel Sets in the Real World
Since the program was released in June 2009, it has been downloaded over 750 times

(as of January 2010). We have heard from many users who have had success using

it with their own data. We even won a prize at VisWeek 2010’s Discovery Exhibition

(http://discoveryexhibition.org) for our entry talking about three case studies using the

program. This was written together with Joe Mako (Mako Metrics), Jonathan Miles

(Gloucestershire City Council, UK), and Kam Tin Seong (Singapore Management

University).

http://discoveryexhibition.org

204 Beautiful Visualization

Joe Mako’s use of the program was especially interesting, because he used it to show a

kind of data flow through many processing stages. Putting the last stage on top meant

that the ribbons were colored by final result, which let him easily see where prob-

lems occurred. There actually is a visualization technique that is visually (though not

conceptually) similar to Parallel Sets that is used for flows, called a Sankey diagram.

ParSets can emulate these diagrams for flows that move strictly in one direction and

only split up (but never merge). Jonathan Miles and Kam Tin Seong’s uses were closer

to the original aim of the program, providing interesting insights into survey results

and bank customers, respectively.

Conclusion
Academia values novelty, but there is clearly a case to be made for letting ideas

develop over time, so they become clearer and more refined. The result is not just a

better understanding of the issues and techniques, but better tools that are easier to

understand and provide more insights to the user.

Redesigning Parallel Sets illustrated how visual representation and data representation

(as well as database design) go hand in hand. Understanding the underlying model of

our own technique led to a better visual design, which in turn led to a much-improved

database and program model.

References
Bendix, Fabian, Robert Kosara, and Helwig Hauser. 2005. “Parallel Sets: Visual analy-

sis of categorical data.” In Proceedings of the IEEE Symposium on Information Visualization,

133–140. Los Alamitos, CA: IEEE Press.

Inselberg, Alfred. 2009. Parallel Coordinates: Visual Multidimensional Geometry and Its

Applications. New York: Springer.

Kosara, Robert, Fabian Bendix, and Helwig Hauser. 2006. “Parallel Sets: Interactive

exploration and visual analysis of categorical data.” IEEE Transactions on Visualization

and Computer Graphics 12, no. 4: 558–568.

Shneiderman, Ben, and Martin Wattenberg. 2001. “Ordered treemap layouts.” In

Proceedings of the IEEE Symposium on Information Visualization, 73–78. Los Alamitos, CA:

IEEE Press.

Stolte, Chris, Diane Tang, and Pat Hanrahan. 2002. “Polaris: A system for query,

analysis, and visualization of multidimensional relational databases.” IEEE Transactions

on Visualization and Computer Graphics 8, no. 1: 52–65.

Theus, Martin. 2002. “Interactive data visualization using Mondrian.” Journal of

Statistical Software 7, no. 11: 1–9. http://www.theusrus.de/Mondrian/.

http://www.theusrus.de/Mondrian/

