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Abstract

Scatterplots in 2D and 3D are very useful tools, but also
suffer from a number of problems. Overplotting hides the
true number of points that are displayed, and showing point
clouds in 3D is problematic both in terms of perception and
interaction.

We propose a combination of 2D and 3D scatterplots, to-
gether with some extensions to overcome these problems. By
linking 2D and 3D views, it is possible to interact in 2D and
get feedback in 3D. That feedback is also enhanced by depth
cues (color and point size) such that the user gets a bet-
ter depth impression. Histograms in 2D and 3D show addi-
tional information about point densities and additional con-
text can be displayed. An example application demonstrates
the usefulness of the technique.
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1. Introduction

Simple 2D scatterplots are a very versatile and useful tool,
used in many applications. The two-dimensional provides
an overview and understanding, and lends itself well to di-
rect interaction with two-dimensional input devices (e.g.,
the mouse).

This simplicity and ease of use hides a number of prob-
lems, however. In a large dataset, many points may be plot-
ted onto the same pixel, without the user being able to tell
how many. This makes it impossible to judge the true dis-
tribution of data from a scatterplot. It is also hard to find
structures that exist in more than two dimensions, which has
prompted the development of extensions such as the scatter-
plot matrix [5].

3D scatterplots [2, 20, 21] solve only a part of this prob-
lem. There is an additional dimension in which structures
can be separated, and the overplotting problem is also re-
duced. Interaction is harder in 3D, however, and also the
display of points in 3D is quite problematic. Current imple-
mentations usually lack sufficient depth cues, so judging the

Figure 1. The combined 2D and 3D scatterplot with user
interface.

three-dimensional structure of the points is very difficult.
Many implementations of 3D scatterplots also use volume
rendering or binning of values into larger objects, which
makes efficient rendering easier, but also creates a number
of problems: Which value is represented when many differ-
ent values are present in a bin? How do we show the num-
ber of values in the bins?

The contribution of this paper is as follows: First, we
introduce halos and depth-dependent point size as novel
depth cues in the context of 3D scatterplots, and we use
histograms as technique to highlight the point distribution
and density inside and outside the spatial focus. Second,
we propose a linked setting of the 3D scatterplot with three
2D views, which combines the advantages of both: Inter-
action is done in 2D, with the results shown in 3D. Third,
we present a case study that illustrates the usefulness of the
combined approach and the novel techniques.

The combined 2D/3D scatterplots were implemented as



part of SimVis [7], a system that uses linked views exten-
sively for the display of high-dimensional data from com-
putational flow dynamics (CFD) simulations. The 3D scat-
terplot displays the points directly, instead of using binning,
and exploits the capabilities of modern graphics hardware
to provide interactive frame rates even for large datasets.

2. Related Work

2D scatterplots are a very old and well-known visualization
method for unstructured data. They and their 3D counter-
parts are available in many statistics and maths packages,
e.g., SPSS, R, MatLab, etc.

A number of extensions have been developed for 2D
scatterplots to deal with higher dimensional data. Prosec-
tion views [10] allow the user to select a range of values on
one or more axes that are not shown – only the points that lie
in this range are projected. SimVis uses a selection of val-
ues on the time axis in a similar way.

Another extension is the scatterplot matrix [5], which
consists of many scatterplots that show all combinations of
two dimensions from the data space. They are positioned in
a matrix so that all plots with the same Y axis are in one
row, and all plots with the same X axis are in the same col-
umn. This idea is partly used in the layout of the combined
2D/3D scatterplots, for a set of three dimensions.

The combined 2D/3D scatterplot – as well as the whole
SimVis system [7] – uses multiple, linked views [1], which
is one of the key ideas for working with high-dimensional
data. In order to make use of multiple views, the user can in-
teract with them by selecting parts of the data to be investi-
gated further. This technique is called brushing and is usu-
ally done directly on the visible structures within the view.
The goal of brushing is to assign a scalar value represent-
ing its degree of interest (DOI) [11, 23] to each data entry.
A classic example for linking and brushing is WEAVE [15],
which allows the user to see different views like scatterplots,
histograms, and a 3D rendering of an object and brush-
ing in the 2D displays. More recently, Groth and Robert-
son [16] present an integrated database visualization sys-
tem that supports 2D and 3D scatterplots. Another example
is the XGobi system [24], which provides interactive meth-
ods for the manipulation of various data views including
high-dimensional scatterplots. If the DOI is not restricted to
binary values, brushing is said to be smooth [8].

Several variants of 3D scatterplots have been pro-
posed [2, 20, 21], which all use volume rendering for dis-
play. In contrast to the statistics packages mentioned
above, volume renderers usually provide fast render-
ing, but also limit the possible interactions. Volume render-
ers also usually use parallel projection, which further limits
depth perception.

3. Extending 3D Scatterplots

Before we discuss in detail our way of interactively linking
2D and 3D scatterplots (section 4) and then apply them ex-
emplarily in combination with multiple linked views to ex-
plore a large dataset (section 5), this section proposes vari-
ous extensions to standard 3D scatterplots; these extensions
address common problems and succeed in overcoming cer-
tain known restrictions, like a compromised perception of
depth and point density.1

3.1. Improving Depth Perception

A common problem of conventional 3D scatterplots is the
loss of depth information after the projection onto the 2D
output device. Interacting with the viewpoint can partly
compensate this shortcoming due to the different movement
speeds of the displayed points (known as motion parallax);
yet if still images are requested, this solution is not applica-
ble. We address this problem by changing two attributes of
the data points depending on their distance from the view-
point – size and color – and propose halos to outline the
shape more cleary (see Fig. 2 for an example).

Size is one of the primary natural depth cues [13], be-
cause the human brain is used to the fact that distant objects
appear smaller, as they occupy less space on the retina of the
eye. As an independent visual dimension (like color and po-
sition), size is also well-suited for representing depth in 3D
scatterplots: Decreasing the point-size with increasing dis-
tance from the viewer enhances depth perception consider-
ably. The size can either drop off reciprocally with the dis-
tance – mimicking a perspective projection in a mathemati-
cally correct way – or decrease linearly from a maximum to
a minimum inside the 3D scatterplot, which permits a bet-
ter discrimination in point size of the distant parts (which
we found more useful in the context of our application).

Although varying the point-size obtains a convincing
depth-impression for sparse areas, this effect levels off as
soon as clusters of similarly colored points cover large, al-
most monochromatic spots on the output device, where sin-
gle data entries can not be distinguished any more. A so-
lution is to outline the shape of single points by drawing
halos [17]: As a technique known from painting, accentuat-
ing the outline can help to intuitively indicate the presence
of depth discontinuities between contiguous elements in a
projection. This comes at the cost of a slightly increased
amount of occlusion, which we found hardly disturbing,
since only the foremost front of a big cluster is visible any-
way. Technically, each point is surrounded by a thin, semi-
transparent circle of the same hue as the original point-color

1 For a fully colored electronical version of this paper
and a video demonstrating the combined scatterplot, see:
http://www.vrvis.at/vis/research/2d3dscatterplots/



Figure 2. Improving depth perception. Left: No depth cues are used; Middle: Depth is indicated with point size and halos are
used to ease the discrimination of single points; Right: Depth cueing using both color and point size, as well as halos.

but with a much lower brightness. As illustrated in the mid-
dle of Fig. 2, varying the point-size in combination with ha-
los conveys a three-dimensional impression and permits to
make out single entries even in dense areas – unlike in the
left image, where neither depth cues nor halos are used.

Apart from size, depth can also be mapped to color: Al-
tering the hue and contrast of scene elements that are far-
ther away from the viewer is a technique known from paint-
ing and rendering and is a frequently used sort of depth cue-
ing [12]. Due to characteristics of the human visual system,
bright and warm colors (like red or yellow) are suited to in-
dicate proximity to the viewer, while dark and cold colors
(blue or grey) are intuitively associated with depth. This op-
tical phenomenon is referred to as chromo-stereoscopy [26].
Of course, color can be used to encode information other
than depth as well: Our implementation for example per-
mits mapping an arbitrary dimension of the dataset to color
using transfer functions, which is a common and essential
functionality for 3D scatterplots. However, mixing various
coloring schemes – although technically possible – is most
often confusing and usually not recommended.

Depth cueing with point size, color and halos can be
done independently or in combination, the latter yielding
the most convincing depth perception (see Fig. 2, right). In
order to achieve interactive frame rates for a large number of
points, modern graphics hardware should be used for mod-
ifying point size and color as well as for generating halos.
Vertex programs have proven useful for these tasks if the
3D scatterplot is point-based (as in our case), stored as a set
of independent vertices. Hardware-based fogging is another
option, yet applies to color only and provides less flexibil-
ity than vertex programs; Our implementation uses one ver-
tex program for all tasks, since the same interpolation fac-
tor can be applied to both point size and color, which is ef-
ficient and guarantees consistency.

3.2. Representing Point Density

The approximate point density at a certain position is impor-
tant information when analyzing characteristics of a dataset.
However, scatterplots (2D and 3D) represent density in a
satisfactory way only as long as hardly any points are ulti-
mately projected to the same pixels (either due to the limited
screen resolution or because the considered data is identical
for several entries). Adapting the scaling does not solve the
problem of identical data and comes at the cost of losing the
overview. Our approach is to incorporate two-dimensional
histograms at each border plane of the cube where the 3D
scatterplot is drawn. Each rendered data point (lying in-
side the cube) is orthographically projected to each bor-
der plane. The 2D distributions are discretisized by equally
sized squares (called bins) in accordance with the desired
resolution. A user-definable scaling is applied to the bin-
counts before any further visualization: Linear scaling high-
lights peak densities while logarithmic scaling permits to
make out slight differences in sparse areas.

As actual depiction of the 2D histograms, we propose
either a geometric representation using one axis-aligned
cuboid per bin (Fig. 3, right cube), where the height re-
flects the respectively scaled bin-count, or a texture-based
flat visualization using one quadratic texture per border
plane matching the resolution of the binning with nearest-
neighbour filtering (Fig. 3, middle cube). In both cases,
the scaled bin values are mapped to the opacities of the
cuboids or texels, respectively, with a user-definable max-
imum opacity. Additional color coding is possible, but may
cause problems due to too much visual complexity. Con-
crete implementations must take into account that transpar-
ent geometry requires a view-dependent back-to-front ren-
dering order.

Although both visualization methods can not solve the
problem of unrecognizable point densities inside the scat-
terplot itself and allow for rather approximate assessments
only, they provide very useful information and contribute to
a better understanding of the data. Chapter 4.2 adapts this



Figure 3. Representing the point density with transparent 2D histograms: The density is not clearly recognizable in the left
third. In the middle, a texture-based representation uses opacity only, while the right third illustrates mapping density to opacity
as well as the height of axis-aligned bins.

Figure 4. Projecting the spatial context perspectively (left)
or orthographically (right). The hatched space is not cap-
tured by the orthographic projection. Note the unequal bin-
ning when equally subdividing the angle instead of the plane
with the perspective projection.

technique for 2D scatterplots where we face similar prob-
lems in representing the point density.

3.3. Spatial Context Information

When analyzing large datasets with many thousands of
points, it is sensible to allow for zooming into the data by
showing only a cubic cutout of the whole scatterplot (the
spatial focus). The points outside this cube (the spatial con-
text) are not rendered by default. In order to avoid deterio-
rating the overview, we discuss a visualization of this con-
text similar to the way as we deal with point densities in
chapter 3.2: After scaling the data as currently chosen, all
points of the spatial context are projected onto the border
planes of the cube as described below and binned according
to the desired resolution. We perform either linear or log-
arithmic scaling before the results are mapped to opacities
and displayed using a texture or geometry-based transpar-
ent representation.

Figure 5. Representing the spatial context: The perspec-
tive projection (left, drawn using projection-aligned transpar-
ent bars) captures the whole spatial context, while the or-
thographic projection (right) omits parts of it (the lobe in the
bottom right corner for example).

We propose a perspective projection towards the center
of the cube of all points, which are outside the spatial focus
(see Fig. 4 left for a 2D sketch): Each border plane serves
as view plane for all points of the spatial context seen from
the cube center using a quadratic view frustum with a field
of view of 90 degrees. This approach strongly resembles
the way cube maps [14] are generated in the field of real-
time rendering (for instance for environment mapping) and
it serves a similar purpose.

For binning, the angle of the field of view (rather than
the view plane) should equally be subdivided in order to
make sure that each bin covers an equal amount of space:
Each bin represents the number of points of the spatial con-
text in a certain direction. In order to intuitively indicate the
direction captured by one bin, we propose to use projection-
aligned bars as geometric representation (Fig. 5, left). Us-
ing non axis-aligned geometry for a persepective projection
also renders it easier for the user to visually distinguish be-



tween the various visualization modes. The scaled bin val-
ues are again mapped to the heights of the bars. It may pos-
sibly seem more intuitive to place the bars of the perspec-
tive projection on a sphere, but we have decided against this
representation as it differs from the shape of the actual spa-
tial focus and leaves a gap in between. A texture-based rep-
resentation is somewhat problematic, since the unequally
sized bins mismatch the equally sized texels. A simple so-
lution is to draw one correctly sized flat quad per bin in-
stead.

Another option is to use an orthographic instead of a per-
spective projection. However, without extensions, this is ap-
plicable only to such data entries that are outside the spatial
focus in not more than one considered dimension; These
points are projected onto the nearest border plane as illus-
trated in the right of Fig. 4. The result can be equally binned
and visualized as texture or using axis-aligned cuboids
(Fig. 5, right). Although this method is simpler, we still fa-
vor the perspective projection, since it captures the whole
spatial context: Neglecting the parts of the context which
are outside the focus in two or three dimensions may be very
misleading and is not a satisfactory visualization. However,
this flaw could possibly be overcome by adding a separate
context representation for the non-captured space.

3.4. Temporal Focus–Context Discrimination

The SimVis system [9], which the 3D scatterplot is part
of, is designed for analyzing flow simulation results over
time, thus the dimensiontime is essential in all views and
should always remains within the attention of the user. In
addition to mapping the dimensiontime to the axes of the
scatterplot just like any other, which virtually decreases the
number of freely assignable dimensions, the view provides
a range slider (somewhat similar to prosection views [10])
as a means of specifying a certain time span of interest –
called temporal focus – within the overall duration of the
simulation: Only this focus is subject to any kind of interac-
tion and spatial context visualization. We refer to this kind
of focus–context discrimination as temporal focus–context
discrimination, though this does not restrict the generality
of the principle visualization, since applying it to arbitrary
dimensions is imaginable (e.g., ’gender’ when dealing with
demographic datasets).

The temporal context is optionally rendered as transpar-
ent grey points – analogous to the visualization in other
SimVis views [7] and clearly discernible from the opaquely
colored points of the temporal focus (see Fig. 6). Since the
rendering order is important for all transparent objects, we
suggest drawing the entire temporal focus before the tem-
poral context with the depth-test enabled: This ensures that
the focus remains visible even behind the context. The user
can define the point sizes separately for focus and con-

Figure 6. Displaying the temporal context as grey points.

text permitting to highlight one or the other. Halos and
depth-dependent point sizes as techniques for depth cueing
(see 3.1) are applicable to the context as well.

3.5. Displaying Principle Component Axes

An important reason for drawing scatterplots is to relate two
or three dimensions in order to visually detect potential cor-
relations. A mathematical way to deal with correlations be-
tween dimensions is to perform a principle component anal-
ysis [18]: Transforming (possibly) correlated variables of an
n-dimensional data space into n uncorrelated variables with
decreasing variability yields an orthogonal basis of the data
space. The axes of this basis are ordered by the amount of
variance the data shows in the respective direction. This is
valuable information when exploring the characteristics of
the dataset and is thus (optionally) visualized: The principle
components are calculated for the spatial and temporal fo-
cus of the three dimensions mapped to the axes of the scat-
terplot in scatterplot space and displayed as 3D arrows (see
Fig. 9 for an example). We use the mean values of all con-
sidered data entries as origin of the obtained coordinate sys-
tem and scale the displayed arrows in accordance to the ab-
solute values of the respective eigenvalues, whose computa-
tion is an intermediate step in the overall calculation of the
principle components.

4. Interactively Linking 2D and 3D Scatter-
plots

The main advantage of 3D scatterplots is that one more di-
mension is simultaneously displayed. However, 2D scatter-
plots are much more widely used and thus much more fa-
miliar to the majority of users. Besides, the two dimensions
of the mouse as standard input device match the dimension-
ality of 2D views, which makes interaction with the data
much easier and more intuitive. This section proposes a



Figure 7. Composite smooth brushing in the combined
2D/3D View: Two cuboid-shaped basic brushes are logically
OR-combined. DOI coloring is applied in all views. The ba-
sic brushes are drawn as rectangles in 2D and as transpar-
ent boxes in 3D. Note the arrangement of the views recog-
nizable by the color-coding of the axes.

combination of 2D and 3D scatterplots and discusses link-
ing and brushing [3] in this context.

4.1. Assisting 3D Viewing with 2D Scatterplots

A common way to complement 3D viewing with 2D
views in commercial modelling applications is to add
three 2D views, each showing an orthographic projec-
tion of the scenery for the X-, Y- and Z-axis, respectively.
Applying this approach to 3D scatterplots yields a spread-
sheet forming a simple 2D scatterplot matrix [5]. This
matrix displays every combination of two data dimen-
sions mapped to the three axes of the 3D scatterplot
(see Fig. 7). The arrangement is important, as neigh-
boring views assign the same dimension to the common
edge to ease comparisons. In order to attain a consis-
tent multi-viewing, changes to any relevant parameter
(e.g. axis-mapping, scaling and so on) take immediate ef-
fect in all views. An in-depth discussion about using
linked multiple views in a spreadsheet setting is pro-
vided by Chi et al. [4].

Apart from providing more familiar 2D scatterplots as
a purpose on its own, a significant advantage of the com-
bined approach is the ability to easily define axis-aligned
3D brushes in a 2D environment. Although conceptually
identical to 2D brushes, it is important that the brush con-

cept matches the view layout: Using the feature specifi-
cation as proposed by Doleisch, Gasser and Hauser [7],
a brush defined by the combined scatterplot is a logical
AND-combination of selections on all three dimensions of
the dataset which are currently mapped to the axes. Such
a brush (referred to as simple brush) represents an axis-
aligned cuboid in 3D and a rectangle in 2D. Due to the view
layout, the boundaries of a brush are collinear in neighbour-
ing 2D views. Simple brushes are created by dragging the
mouse in any 2D view, where the two dimensions mapped
by this view are constrained according to the user input,
while the third (hidden) dimension is initially defined by
the size of its spatial focus. After creation, simple brushes
can be moved and resized in any 2D view which takes im-
mediate effect in all views. We only support axis-aligned
brushes, because brushes of this shape do not implicate any
correlation between the dimensions [7]. However, the user
can define arbitrarily complex composite brushes by com-
bining simple (and composite) brushes using logical AND
or OR combinations [7].

We also support smooth brushing [8]: The user can split
the border of a simple brush into independently modifiable
interior and exterior boundaries, which causes the according
degree of interst (DOI) function to drop off linearly from
1.0 inside the interior boundary to 0.0 at the outer bound-
ary. A visualization of the DOI in 2D scatterplots is essen-
tial: Brushes defined by the combined scatterplot constrain
three dimensions and thus one more than can be shown by
a single 2D view; However, 2D rectangles as 2D outlines
of brushes do not provide any information concerning the
depth-validity of the brush, and even points inside a rectan-
gle in 2D can lie outside the brush in 3D; therefore the col-
oring of the points should reflect their DOI in order to facil-
itate a correct understanding of the current brushing situa-
tion. Among possible visualization options for the DOI are
mapping the minimum, maximum or average of the DOI
values of all data entries, which project to a certain pixel,
to color. Additionally, providing coloring based on the DOI
in the 3D view can further enhance the comprehension of
the current brushing. An example for a composite smooth
brush with DOI coloring in the combined 2D and 3D scat-
terplot is shown in Fig. 7.

4.2. Adapting 3D Extensions for 2D Scatterplots

Some extensions of 3D scatterplots as presented in chap-
ter 3 are also applicable to 2D scatterplots in a slightly mod-
ified version. This is because 2D and 3D scatterplots have
some common drawbacks: Due to the loss of one dimen-
sion compared to 3D scatterplots, the problem of unrecog-
nizable point densities is usually even worse in 2D. Ana-
logically to the 3D case (see section 3.2), we propose de-
picting the spatial focus with two histograms per view –



Figure 8. Extensions for 2D scatterplots: Histograms indi-
cate the point density of the whole focus and the brushed
focus and grey areas represent temporal context.

for the X- and Y-axis, respectively (see Fig. 8): Located at
the margin of each view, they share its resolution. Since the
amount of values actually brushed is often hard to make out
in 2D, brushing can additionally be considered by draw-
ing a co-located and equally scaled histogram in a differ-
ent color, counting each entry according to its current DOI
value (which fits well with smooth brushing). It should be
mentioned that point densities in 2D scatterplots could also
be visualized using alpha-channel transparency [25, 6], but
this has not been implemented here.

The principle component axes can be shown in 2D views
as well (see section 3.5): Either an independent 2D analy-
sis can be performed for each view, obtaining three differ-
ent 2D coordinate systems (one for each 2D view), or the
3D axes computed by the analysis in 3D space can be pro-
jected orthographically to 2D space. The former approach
provides more information for the 2D views themselves,
while the latter is more consistent with 3D viewing.

Analogous to the 3D case, 2D scatterplots also permit vi-
sualizing the temporal context as described in chapter 3.4.
Since the perception of the respective focus must not be
compromised, we suggest drawing the focus on top of the
context, hiding it in places where both focus and context
can be found and using clearly discernable colors for both.
Fig. 8 illustrates a combined application of the proposed 2D
extensions.

4.3. Linking External Views

The SimVis system provides linked views of different kinds
in general, and multiple instances of combined scatterplots
in particular. This general linking between views differs
from the way, how the views of one instance of the com-
bined scatterplot are bidirectionally linked, as described in
chapter 4.1: Brushes which are defined in one view can not
be modified in an external view, since any interaction de-
pends very much on the concrete visualization as well as
the subset of displayed dimensions, which are both likely
to mismatch in general. However, it is possible to import
brushes defined in external views for visualization purposes
only, which is crucial as it allows users to identify brushed
features with different visualization techniques and axis-
mappings. Furthermore, composite brushes can be defined
by logically combining brushes of different views [8, 7]: It
is therefore helpful to distinguish between local brushing
(the combination of all brushes defined in a single view)
and global brushing (actually brushed data points consid-
ering the overall composite brush). To allow for this dis-
tinction, different colors are assigned to locally and glob-
ally brushed data points (see Fig. 13 and Fig. 14 for exam-
ples).

5. Application Scenario

This chapter demonstrates the application of combined 2D
and 3D scatterplots and other linked views for interac-
tively exploring and analyzing a large dataset. It puts spe-
cial emphasis on using the extensions proposed by this pa-
per as well as the aspect of linking with other views of
the SimVis software. Although this case study investigates
time-dependent simulation results, the extensions and link-
ing techniques are also applicable for general information
visualization (InfoVis) datasets, as illustrated in Fig. 9. It
demonstrates the evolution of the attributes weight, miles
per gallons and horsepower of cars in the years 1970 to
1982, showing a clear tendency towards lighter and weaker
cars with less gas consumption. For a fully colored ver-
sion of this paper and animation sequences, please refer to
http://www.vrvis.at/vis/research/2d3dscatterplots/.

5.1. The Application Setting

Our collaboration partner belongs to the field of the au-
tomotive engineering industry, where results from com-
putational flow simulation are analyzed, which is a chal-
lenging task. Simulations are time-consuming and typically
many simulation-cycles are required to optimize the per-
formance of a specific system. In order to speed up these
simulation-cycles and in turn also shorten development
times, interactive visualization is crucial to achieve fast and



Figure 9. An InfoVis dataset: The attribute ’year’ is mapped
to color, the attributes ’weight’, ’horsepower’ and ’miles per
gallon’ are mapped to the axes. The yellow line is the first
principle component axis, the other two axes are hardly vis-
ible as correlation occurs mostly in one direction.

Figure 10. The T-junction: Warm liquid is entering from one
inlet (right), hot liquid expands from a second inlet (above)
and splits due to an obstacle.

successful analysis of the data. Visualization is often the
means to understand complex relationships between differ-
ent data items. However, the visualization has to cope with
an amount of data which is usually vast due to detailed geo-
metrical models (in terms of numbers of cells), the number
of attributes computed for each cell and the time-dependent
aspect (number of timesteps) of the simulation.

The case presented here is a T-junction with an extended
chamber around the junction (see Fig. 10) and an obsta-
cle below the secondary inlet (red in Fig. 10). Warm liq-
uid starts to float in from the main inlet with the beginning

of the simulation (at the right of Fig. 10). After the first
third of the time-span of the simulation, a hot liquid en-
ters the junction from the second inlet. In this example the
user is interested in the mixing behaviour and particularly in
the existence of vortices and eddies, which are hard to de-
tect by purely mathematical means. The dataset is consid-
erably large (approximately 32000 cells, 18 data attributes,
100 timesteps), thus a thorough analysis represents a chal-
lenge for the software (on PC hardware) as well as for the
user.

5.2. Initial Exploration

One can roughly distinguish between two phases during the
investigation of the dataset: exploration and analysis [22].
The exploration is often unfocused and aims at becom-
ing familiar with the specific characteristics of the dataset,
studying approximate developments over time, identifying
correlations between dimensions, and has the goal to formu-
late certain hypotheses. The subsequent analysis focuses on
these hypotheses and confirms or refutes them. Both phases
can be supported by interactively linked visualization tools
(such as SimVis) in general and the combined scatterplots
in particular.

The number of dimensions obtained from computational
simulation (18 in the T-junction example) typically exceeds
by far, what can simultaneously be displayed in a scatter-
plot. However, users usually consider a much smaller set
of dimensions for most questions of analysis: Referred to
as preferred dimensions, this set is normally sufficient to
comprehend the most important features of the dataset (at
least with respect to certain questions). In the case of the T-
junction, these dimensions consist of velocity, pressure, tur-
bulence kinetic energy (TKE), temperature and time, which
is quite typical for computational flow simulations. Espe-
cially important in our context is that this set nicely matches
what simultaneously can be displayed by our scatterplot
(and preserving a certain visual coherence): Velocity, pres-
sure, and TKE are mapped to the three axes of the 3D scat-
terplot, temperature is mapped to color and time is consid-
ered as temporal focus and context, defined with a range
slider (see chapter 3.4).

In order to get a first approximate idea of the data, the ex-
ploration starts with moving a narrow temporal focus (time-
slab) back and forth in time (temporal context and his-
tograms for the spatial focus are enabled to permit a cor-
rect assessment of the relative position in time and the cur-
rent point distribution, respectively, see Fig. 11). This ba-
sically reveals four temporal periods: Expansion of the liq-
uid from the first inlet towards the outlet, a first consoli-
dation phase, expansion and mixture from the liquid of the
second inlet, and the second consolidation phase. The two
expansion phases are characterized by approximately linear



Figure 11. The evolution of velocity, pressure and turbulence over time: The first consolidation phase (left), the second ex-
pansion period (center) and the state at the end of the second consolidation phase (right).

Figure 12. Mapping brushed physical space to attribute
space: The main chamber of the T-junction (shown in the
linked 3D View of SimVis) closely corresponds to the lobe at
high pressure in the linked 3D scatterplot.

changes in velocity, quick rising in pressure and high values
of TKE. During the consolidation phases, velocity and pres-
sure remain approximately the same, while the TKE slowly
decreases with increasing duration of the phases; the simu-
lation shows stabilization at the end of the last phase. A par-
ticularly strong increase in the overall size of the point cloud
with respect to the displayed dimensions can be observed
during the second expansion phase, which suggests distinct
vortices. This is identified as interesting for further exami-
nation – together with the beginning of the second consoli-
dation phase in order to check, which turbulences are non-
recurring and which are persistent.

5.3. Information Drill-Down and Analysis

Unlike the first phase of exploration as described above,
where specifying the temporal focus has been the only in-
teraction with the data, more advanced investigations re-
quire extended brushing facilities and linking of different
views (see chapter 4.3). Relating physical locations to fea-
tures in attribute space and vice versa is an essential part
of the exploration with brushing. Three settings are reason-
able in general for linked views:

• Brushing in space and visualizing the according at-
tributes (Which characteristics can we find in certain
parts of the geometric model?)

• Brushing attributes and visualizing the related posi-
tions in space (Where can we find certain character-
istics?)

• Brushing attributes and visualizing other attributes
(How are certain dimensions related to each other?)

We focus the further exploration on the main chamber (by
brushing in space), since the situation within the inlets and
outlet (being significantly influenced by the boundary con-
ditions of the simulation) is rather known and therefore less
interesting. Brushing in 3D space can easily be done with
the combined scatterplot by mapping the X-, Y- and Z-
coordinates of the cell centers to the three axes. As can be
seen in Fig. 12, the main chamber (brushed in space and
visualized with the linked 3D view of SimVis) largely co-
incides with the lobe at high pressure of the linked com-
bined scatterplot showing pressure versus velocity versus
TKE (Fig. 12 is an example for linking multiple views of
different kinds). In order to make efficient use of the avail-
able space and resolution, we adapt the scaling of both com-
bined scatterplots (space and attributes) so that it contains
only the brushed part and consider the rest as spatial con-
text.

Locally investigating the main chamber with a spa-
tial brush which is refined to 5x5x5 cell centers (plus
one surrounding slice of cells smoothly brushed) re-
veals high peaks of TKE in some parts next to the obsta-
cle in the direction to the main inlet: Comparing spatial
and attribute domain, Fig. 13 illustrates very differ-
ent turbulence-conditions across the width of the T-junction
over time. High turbulences often indicate the pres-
ence of eddies; therefore it could be that some of the hot
water entering the main chamber from the secondary in-
let forms an eddy in this place.

We try to verify or refute this assumption by brushing
in attribute space. If an eddy exists, it most probably con-
tains some of the entering hot liquid due to the proximity to



Figure 13. Relating locations inside the main chamber to their attributes: The turbulence kinetic energy is very high for loca-
tion 1 (top), considerable for location 2 (bottom, left) and only medium for location 3 (bottom right). Note the representation of
spatial context in the 3D views. Not shown by this figure: The smaller lobes in TKE originate from timesteps before the hot liq-
uid has fully entered the main chamber and vanish afterwards.

Figure 14. Combining several brushes to extract the eddy: Temperature is brushed using a histogram (left), the flow direction
is defined with the combined scatterplot (middle) and the result is visualized in the 3D view (right).

the second inlet. We address this consideration by brushing
high temperatures in the histogram view of SimVis [19], as
illustrated in the left of Fig. 14. Furthermore, we are espe-
cially interested in areas where the flow direction is differ-
ent from the main direction, because swirling liquids usu-
ally exhibit velocities from a wide range of flow directions.
In order to address this, we refine the brush on tempera-
ture with a brush defined in a linked combined scatterplot
where the X-, Y- and Z-components of velocity are mapped

to the three axes: The principle component analysis of these
three dimensions reveals that the main flow can be found in
positive X-direction with an additional flow in negative Y-
direction – it is also helpful for this task to display the zero
crossings of each dimension (as thin lines in 2D and trans-
parent planes in 3D). Smoothly brushing all opposite flows
by selecting approximately the negative X- and the positive
Y-direction as well as a certain band around zero in the Z-
direction (Fig. 14 middle) outlines a rotating flow, located



in the investigated area, in the linked 3D View of SimVis
(Fig. 14 right). This is a clear indication of an eddy, which
cools down during the upward flow, as can be seen when
mapping temperature to color. However, the visualization
shows that the defined properties can be found on the other
side of the obstacle as well: This secondary result could be
subject of further investigations.

Concluding, we have demonstrated in short, how inter-
actively linking the combined scatterplot with other views
of SimVis has been a successful way to explore and ana-
lyze complex, multi-dimensional and time-dependent flow
data. Apart from linking and brushing, a task-centered ap-
plication of the proposed extensions to 2D and 3D scatter-
plots has proven useful in gaining an in-depth understand-
ing of the dataset.

6. Discussion and Future Work

In this paper, we have presented several extensions to 2D
and 3D scatterplots in order to overcome some known re-
strictions (as a compromised 3D impression and limited in-
teraction facilities) and have proposed a way of augmenting
a 3D scatterplot with three 2D views in order to combine
the advantages of both. The introduced extensions improve
the depth perception in 3D, address the problem of overlap-
ping point densities in both 2D and 3D, and help the user
to keep an overview in space as well as in time when fo-
cussing on certain temporal and spatial parts of the plot.
Linking 2D scatterplots, which are a widely used visualiza-
tion technique, successfully complements the 3D scatterplot
by providing both an alternative visualization and a conve-
nient way for defining brushes which are consistent with the
3D setting. Since many questions occurring during the in-
teractive exploration of datasets can only be answered by
linking multiple views of various kinds (also different from
scatterplots), we described the way, how the combined scat-
terplot is integrated in our SimVis system as an example for
interactive, multiple-view exploratory software. Finally, we
demonstrated the application of the proposed scatterplot-
extensions as well as linking with external views by means
of an exemplary investigation of large computational flow
simulation results: Repeatedly interacting with the data (for
example by moving around brushes) and visualizing related
data proved a successful and quick way to detect interest-
ing features and answer questions of the exploration.

Although much less common than 2D scatterplots, 3D
scatterplots have proven advantageous along with the pre-
sented extensions: Most obviously, the additional dimen-
sion is valuable when simultaneously relating as many at-
tributes as needed, and being able to do so in a single view
emphasises visual coherence. Furthermore, its dimensional-
ity matches the three dimensions of physical space, which
permits intuitive visualization and interaction, like brush-

Figure 15. Assigning time to one axis of the 3D scatterplot
allows to compare the 2D scatterplots over time.

ing certain areas of a physical model as well as the three
components of velocity, or any kind of three-dimensional
gradients. Third, special axes-mappings provide interesting
views: For instance assigning time to one axis yields a set
of 2D scatterplots as a stack of slices (Fig. 15). The ma-
jor drawbacks of 3D scatterplots are occlusion, comprehen-
sion and interaction difficulties due to the mismatch in di-
mensionality of three shown by the scatterplot and two used
by standard input and output devices, yet these can be miti-
gated, as shown in this paper.

As mentioned in the introduction (Section 1), we apply
point-based rendering for displaying the 3D scatterplot –
unlike much former work [2, 20, 21], which is based on vol-
ume rendering – allowing a continuous mapping from data
space to scatterplot space. At the cost of a linear increase
of the rendering complexity with the number of points, we
avoid aliasing-problems caused by any kind of binning: Es-
pecially when displaying categorical dimensions, potential
aliasing-artefacts may render the results of discretized visu-
alization useless. Besides, the point-based approach allows
assigning colors from channels or the DOI to points in an
unambiguous fashion.

As future work, we plan to extend the integration of
the principle component analysis as a means to intro-
duce a data-driven coordinate system: Being able to define
principle-component aligned brushes could ease the spec-
ification of features. Moreover, our future research will
focus on brushing directly in the 3D view of the scatter-
plot.
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