
Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

c©2002 Society for Desing and Process Science

Tools for Acquiring Clinical Guidelines in Asbru

Robert Kosara Silvia Miksch Andreas Seyfang Peter Votruba
Institute of Software Technology and Interactive Systems

Vienna University of Technology, Vienna, Austria
{rkosara,silvia,seyfang }@asgaard.tuwien.ac.at, e9625117@student.tuwien.ac.at

ABSTRACT:In order for clinical guidelines to be veri-
fied, they must first be acquired or at least translated into a
format that can be treated formally. Most guidelines today
either exist as plain text, tables, or flow-charts.

We present two tools that support this translation: The
Guideline Markup Tool (GMT) and the Pontifex Intelligent
XML Editor Extension (PIXEE). The GMT provides a rela-
tively easy way to translate free text into Asbru. It does this
by displaying both the original text and the translation, and
showing the user which parts of the Asbru code correspond
to which elements of the original text. This not only makes
it easier to author plans, but also to understand the resulting
Asbru constructs in terms of the original guideline.

PIXEE is a more general XML editor that has some spe-
cial features due to a richer representation of the language
than pure XML. It provides means to aggregate informa-
tion dynamically and also to more effectively work with
language constructs.

Both these tools make the translation into a formal lan-
guage easier and therefore enable us to formally verify
guidelines, thus reducing errors and ambiguities in them.

I. I NTRODUCTION

Protocol-based care is getting more important as quality
assurance and financial constraints are becoming stronger
issues in health care [16]. Clinical guidelines so far are
mostly written in plain text, decision tables, or flow-charts.
This makes them easier to read for physicians without train-
ing in formal languages, but also has a number of disadvan-
tages. One of them is that they are often incomplete and
ambiguous, and lack any formal means of verification.

In the Protocure [12] project, we want to use formal
methods for “curing” protocols from such problems as am-
biguity, inconsistencies, etc. But in order to do this, we
need a formal representation. Asbru (see Section II) is the
language used for Protocure. It provides a very complex set
of operators and constructs that effectively represent guide-
lines.

Translating clinical protocols to formal guideline repre-
sentations is not an easy task, however [6]. The text guide-
lines must be adhered to, while at the same time adding
information from the common knowledge of physicians
(which protocols can naturally rely on). This translation
will be done by knowledge engineers, who are also the tar-
geted users of the programs described in this paper.

We need tools that support this task. The first one must
not only make it possible to add elements to an Asbru
guideline, but also show the user which parts of the original
guideline that information comes from. This makes it pos-
sible for the physician to understand decisions made by the
execution unit (which monitors the patient and gives advice
based on the current plan) in terms of the original guideline.
The second is a general XML editor which provides some
features based on a richer language description than a DTD.

This paper is organized as follows: The next section
briefly introduces the Asbru language; Section III lists some
related work for our tools; Section IV describes the Guide-
line Markup Tool and shows how it can be used; Section V
introduces the PIXEE XML editor; Section VI describes a
scenario to demonstrate the use of the presented tools. We
end up with conclusions in Section VII.

II. T HE ASBRU LANGUAGE

Asbru [8], [9], [13] is a plan representation language that
is used in the Asgaard Project1 to represent clinical guide-
lines as time-oriented, skeletal plans. It can be used to ex-
press clinical protocols as skeletal plans [2] that can be in-
stantiated for every patient.

In Asbru, the following parts of a plan can be specified:
preferences, intentions, conditions, effects, andplan body
(actions).

A. Preferences

Preferences constrain the applicability of a plan (e.g.,
select-criteria: exact-fit, roughly-fit) and express the kind
of behavior of the plan (e.g., kind of strategy: aggressive or
normal).

B. Intentions

Intentions are high-level goals that should be achieved
by a plan, or maintained or avoided during its execution.
This information is very important not only for selecting the
right plan, but also for critiquing treatment plans as part of
the ever ongoing process of improving the treatment. This
makes intentions one of the key parts of Asbru.

1In Norse mythology,Asgaardwas the home of the gods. It was located
in the heavens and was accessible only over the rainbow bridge, called
Asbru (or Bifrost) (For more information about theAsgaardproject see
http://www.asgaard.tuwien.ac.at/ ).



2

C. Conditions

Conditions need to hold in order for a plan to be
started, suspended, reactivated, aborted, or completed.
Two different kinds of conditions (called preconditions)
exist, that must be true in order for a plan to be started:
filter-preconditions cannot be achieved through treatment
(e.g., subject is female), setup-preconditions can. After a
plan has been started, it can be suspended (interrupted) un-
til either the restart-condition is true (whereupon it is con-
tinued at the point where it was suspended) or it has to be
aborted. If a plan is aborted, it has failed to reach its goals.
If a plan completes, it has reached its goals, and the next
plan in the sequence is to be executed.

D. Effects

Effects describe the relationship between plan arguments
and measurable parameters by means of mathematical func-
tions. A probability of occurrence is also given.

E. Plan Body (Actions)

The plan body contains plans or actions that are to be
performed if the preconditions hold. A plan is composed
of other plans, which must be performed according to the
plan’s type (Table I): in sequence, in any order, in parallel,
periodically (as long as a condition holds, a maximum num-
ber of times, and with a minimum interval between retries),
or unordered (i.e., with no specified constraints).

A plan is decomposed into sub-plans until a non-
decomposable plan — called an action or a user-performed
plan — is found. All the sub-plans consist of the same com-
ponents as the plan, namely: preferences, intentions, condi-
tions, effects, and the plan body itself.

Plans are executed (i.e., their parameters monitored, con-
ditions checked and reacted to) by an execution unit. User-
performed plans are displayed to the user so that he or she
can react and then tell the machine if and when the action
is finished and if it was successful.

F. Time Annotations

An important part in specifying the complex temporal as-
pects of plans are Time Annotations. A Time Annotation
specifies four points in time relative to a reference point
(which can be a specific or abstract point in time, or a state
transition of a plan): The earliest starting shift (ESS), lat-
est starting shift (LSS), earliest finishing shift (EFS) and
latest finishing shift (LFS). Two durations can also be de-
fined: The minimum duration (MinDu) and maximum du-
ration (MaxDu). Together, these data specify the tempo-
ral constraints within which an action must take place, or a
condition must be fulfilled for a condition to trigger.

III. R ELATED WORK

Different methods for acquiring knowledge have been
proposed. Most of them concentrated on the authoring and
ignored the fact that other materials were available. One

such example is PROT́EGÉ [10], which generates a struc-
tured editor from a language definition. This would appear
to be useful for XML applications, but proved very hard to
use due to the rigid structure of the generated dialogs.

Another approach was AsbruView [5], a visualization
and user interface for editing Asbru plans. The use of
metaphors (running tracks, traffic signs) and graphical de-
piction made the language more accessible to physicians.
But this system also ignored all existing materials.

An existing tool similar to the GMT presented here
has been proposed for the Guideline Elements Model
(GEM [14]): the GEM Cutter [11]. It only allows copying
text pieces from the original to the GEM representation, but
does not retain the connection to the source position.

HGML [3] is another approach that uses XML for rep-
resenting guidelines. Its expressive power is, however,
much smaller than that of Asbru, and therefore is not suited
for formal verification. A somewhat similar approach is
Guide-X [15], which is based on XHTML and provides
means to markup concepts in the original guideline.

Other guideline modeling techniques have also been pro-
posed [7], [16], but a discussion of them is outside of the
scope of this paper.

IV. T HE GUIDELINE MARKUP TOOL (GMT)

The Guideline Markup Tool (GMT) is an editor that
helps translating guidelines from free text into Asbru. It
has to support the following tasks:
Authoring Guidelines.We want to be able to take a new
guideline in plain text and create an Asbru version of it.
Understanding Guidelines.For an Asbru guideline, we
want to be able to see where values in the different parts
of the Asbru code come from, and how parts of the original
text were translated into Asbru. This is important not just
for knowledge engineers, but also for physicians wanting to
get an understanding of the language.
Structuring Asbru.The GMT provides a structured list of
Asbru elements that needs to be done in a way that best
supports the authoring of plans. This list will also provide a
good starting point for teaching material and possible sub-
sets of the language for special purposes.

What the GMT does not provide is complex XML edit-
ing, because we concentrated on the new interactions in-
stead of implementing a whole editor. The Asbru code
that results from the first conversion step will need to be
edited further in an XML editor (like PIXEE, which is de-
scribed below). This second step involves more knowledge
of Asbru and its capabilities than medical knowledge – in
contrast to the first step. So the users of this program will
be physicians (rather than computer scientists), who under-
stand the original guideline, and who can select the rele-
vant parts and associate them with key Asbru parts (a basic
knowledge of Asbru is also required, of course).

The GMT is written in Java because of its higher plat-
form independence, clean language design, and freely
available user interface and XML components.



3

All plans must complete
to continue

Some plans must
complete to continue

Execute in
total order
(sequence)

Do-All-SequentiallyPlans
(no continuation-condition,
all plans must complete)

Some-SequentiallyPlans
(continuation-condition
specified as subset of plans)

Start together Do-All-TogetherPlans
(no continuation-condition,
all plans must complete)

Some-TogetherPlans
(continuation-condition
specified as subset of plans)

Execute in any
order

Do-All-Any-OrderPlans
(no continuation-condition,
all plans must complete)

Some-Any-OrderPlans
(continuation-condition
specified as subset of plans)

TABLE I

PLAN TYPES IN ASBRU.

Fig. 1. The Guideline Markup Tool (prototype). The original plain text guideline is on the left, the corresponding Asbru tree on the right, and the Asbru
structure on the bottom. The marked parts of the original guideline and the XML representation are linked.

The GMT window consists of three parts: The left
side (HTML View) simply contains the original guideline,
where the user can select parts to be connected to Asbru el-
ements later. The XML View on the right side shows the

Asbru XML tree, with the lower part giving a more de-
tailed view of the currently selected element (with all its
attributes).



4

The bottom part (Structure View) contains all Asbru el-
ements as well as macros that the user can insert. These
elements are organized in a tree, which is represented by
the list boxes: each box shows the contents of the node
selected in the box to its left. Once a leaf is selected, its
contents (the macro or single tag) is shown in the “Macro”
window on the bottom right.

In a next step, we will also include a search facility so
that the user can find macros or elements by looking for
keywords in descriptions that can be added to each macro
or element. The will be displayed in their normal position in
the tree, so that the user can learn where to look for similar
pieces of Asbru code.

A. Interaction

There are two different interactions in the GMT: Adding
information to a plan, and browsing a plan.

When writing a new plan or editing an existing one, the
user selects a part of the plain text that will be put into the
plan. He or she then chooses the appropriate Asbru ele-
ment or macro from the Structure View, and inserts it into
the XML tree by pressing the “Insert Macro” button. The
element is inserted as a child of the currently active node,
and an Asbru comment with the link to the selected text
is added automatically. An HTML anchor is also inserted
into the text, which spans the selection and is then used to
properly identify the position of the link.

When browsing a plan, the user can select a comment in-
side any element, and is then shown the corresponding part
of the plan. There is also the reverse mapping, which makes
it possible to select any part of the plain text guideline and
be shown the parts of the plan that point to it (if any).

B. Aliases and Abstract Elements

Pontifex also allows a simple form of inheritance by
defining abstract elements that do not appear in the lan-
guage themselves, but instead one of their children must
appear (similar to abstract classes in object-oriented pro-
gramming, which cannot be instantiated, but a pointer to an
object of such a type points to an instance of a sub-class).

Another Pontifex feature are aliases, which allow the lan-
guage designer to avoid redundancy when defining many
tags that are structurally the same, but have different mean-
ings. In such a case, additional names can be assigned to the
structure that cause it to be replicated on the XML level.

PIXEE supports abstract types directly, so that the user
can see which abstract type would go into a certain position.
This is an aid in understanding the structure of the language,
because it allows a grouping of connected tags.

C. Configuration

The connection between the Asbru file and the original
guideline is made by means of a comment tag that can be
put almost anywhere in Asbru, and that can contain a URL.
When a part of the original text is selected and a connection

made, an HTML anchor is inserted into the text, that the
URL in the comment can point to. This anchor does not
alter the appearance or contents of the original file in any
problematic way.

What element is used to store the link, and what XML
has to be inserted to create valid Asbru is specified in a
configuration file. Thus, the GMT is not limited to Asbru,
and not limited to translating clinical guidelines to Asbru -
it could be used for any similar translation.

All elements in the Structure View are also read from the
configuration file. The user can insert either single elements
or macros. A macro consists of an arbitrary Asbru construct
that is inserted instead of a single tag. This makes it pos-
sible to provide templates for combinations that are used
often, and thus make work faster.

D. Asbru Structure

For this program to be useful in practice, the more than
120 Asbru tags [13] must be structured in a way that makes
it possible for the user to easily find the parts he or she
needs when translating a plan. For structures that are used
quite often, we also want to provide macros or templates
that require less work from the user. But these also must be
organized in a way that is easy to navigate and use.

We therefore see it as the next challenge to create such a
structuring of Asbru that is not oriented at formal criteria,
but on the needs of the user when authoring a plan. We also
believe that such a structure could prove useful for writing
educational material on our language.

V. PIXEE

PIXEE is an XML editor built on top ofPontifex [4]
(“bridge builder” – hence the name “Pontifex Intelligent
XML Editor Extension”), which is a tool that generates a
parser, a class hierarchy and documentation from a lan-
guage specification of an XML language. In addition to
the types of the DTD (document type description), it also
has support for types in attributes (like integers, floats, etc),
namespaces in ID and IDREF attributes, and a simple form
of inheritance. XML Schema [17] is of course much more
powerful, but the means of Pontifex were sufficient for the
needs of Asbru before Schema became an official recom-
mendation.

PIXEE can be used completely independently from As-
bru, of course, but in the context of this project will be used
by computer scientists (and possibly physicians with a very
good knowledge of Asbru) to change the structure of previ-
ously defined parts (e.g., with the Guideline Markup Tool),
combine them, add declarations, etc.

Its window (Figure 2) consists of three parts: the con-
trol panel on the left which itself is divided into the upper
element action part, and the lower attribute editor; and the
right side, which shows the XML tree.

PIXEE takes the information about the language from an
HSL (Harmless Specification Language) file which is also



5

Fig. 2. A screenshot of PIXEE

used for generating the parser etc. by Pontifex [4]. Addi-
tional configuration, like the XPath statements associated
with certain tags, are read from an additional configuration
file which can be user-specific.

A. Data Aggregation

When using XML, its tree structure is of great value be-
cause the user can select how much and which information
to see in an editor. But when hiding a sub-tree, a some in-
formation is lost that might still be of interest, even though
most of that information is not. In such a case, it would be
desirable to be able to extract some of that information and
display it even though the subtree is collapsed.

PIXEE provides a means for this by allowing the user to
specify XPath and XSL expressions for each tag that are ex-
ecuted when a sub-tree with that tag as the root is collapsed.

Folding and unfolding of elements is done by clicking
on the triangles in front of the element’s name. When an
element is folded, PIXEE runs the XPath query associated
with it and displays its results next to the element’s name.
In Asbru, this can be used to see which plans are user-
performed, for example (Figure 2).

B. IDs and IDREFs

One key problem when using XML for Asbru was that
all ID attributes share one namespace. This problem was
overcome with Pontifex, which changed all IDs to simple
attributes at the XML level, but managed the namespaces in
the parser it generated. This way, any XML tool can still be
used for editing Asbru, but of course this is less convenient.

PIXEE knows the namespaces Pontifex used when gen-
erating the DTD, and therefore only shows those IDs to the
user that are in the namespace of a particular IDREF when
edited. It also allows the user to jump from an IDREF at-
tribute to the referenced tag by simply clicking the attribute.
This way, navigation between parts of the document is easy.

C. Attribute Types

PIXEE not only knows the attribute types of XML, but
also the extended ones of Pontifex. It therefore is able to
show a list of all possible values for an enumeration at-
tribute, or only accept valid numbers for float fields, etc.

Depending on the type, PIXEE only allows certain inputs
for attributes. For enumeration attributes, it displays a list-



6

box of all possible values (Figure 2); this is also done in
a similar way for reference attributes: Only the names that
are in that namespace are shown and can be inserted.

VI. U SING THE TOOLS IN PRACTICE

We envision the use of the presented tools similar to the
scenario described in the following.

As an example (also for the screenshots), we use the
Jaundice guideline (Figure 1) published by the American
Academy of Pediatrics [1], [6].

Jaundice is a common disease in new-born babies which
is due to an increased bilirubin level (bilirubin is a by-
product of hemoglobin breakdown). It is treated by chang-
ing the child’s food, subjecting him or her to infrared radi-
ation, and possibly other measures, if the disease turns out
to be serious (which it is in some cases).

First, the original HTML version of the guideline is
loaded into the GMT. The knowledge engineer starts work-
ing on a translation from it to the Asbru version. During
this time, knowledge is also added from a physician who is
an expert in the field of the guideline (like a pediatrician in
the case of Jaundice).

When the modeling of the key parts is done, PIXEE is
used to restructure the plans, change the way information
is passed between them, etc. This (rather complex) process
also involves returning to the original guideline repeatedly,
which is done with the GMT.

Once the guideline is completely formalized, it can be
verified. Any errors that show up in the verification step
must be traceable to the original guideline. This is also done
by looking up the corresponding parts of the guideline us-
ing the GMT. It is also possible that errors are due to the
translation or the added knowledge from the expert, which
can also be found out relatively easily if a part is erroneous
that does not correspond to the guideline.

Finally, when the guideline is eventually used in practice
and a recommendation is given based on it, it is possible
to track the reasons for such a recommendation back to the
original text, while getting the support of a tool that moni-
tors patient values and tells the physician what the guideline
recommends at every point.

VII. C ONCLUSIONS ANDFUTURE WORK

We have presented two tools that help translate free-text
guidelines into Asbru to make formal verification possible.
The Guideline Markup Tool helps with the initial transla-
tion, and makes it possible see which parts of the original
guideline a part of the Asbru came from. PIXEE is a tool
for editing XML that is specially suited for a complex lan-
guage such as Asbru, and supports the user when dealing
with large files where he or she needs to keep an overview
and navigate between the different parts easily.

In the future, we will improve these tools further and de-
velop a structuring of the existing Asbru elements that sup-
ports the user when authoring Asbru guidelines.

ACKNOWLEDGEMENTS

This work is part of the Asgaard Project, which is supported by
“Fonds zur F̈orderung der wissenschaftlichen Forschung” (Austrian Sci-
ence Fund), grant P12797-INF.

The Protocure project is funded by the IST program of the European
Commission under contract number IST-2001-33049.

REFERENCES

[1] American Academy of Pediatrics’ Hyperbilirubinemia Guideline.
http://www.aap.org/policy/hyperb.htm .

[2] Peter E. Friedland and Yumi Iwasaki. The concept and implemen-
taion of skeletal plans.Journal of Automated Reasoning, 1(2):161–
208, 1985.

[3] C. Greg Hagerty, David Pickens, Casimir Kulikowski, and Frank
Sonnenberg. HGML: A hypertext guideline markup language. In
Proceedings Annual Meeting of the American Medical Informatics
Association (AMIA), pages 325–329, 2000.

[4] Robert Kosara, Klaus Hammermüller, and Silvia Miksch. Co-
designing XML-based languages and classes with pontifex. Tech-
nical Report Asgaard-TR-2000-1, Vienna University of Technology,
Institute of Software Technology, Vienna, Austria, 2000.

[5] Robert Kosara and Silvia Miksch. Metaphors of movement: A vi-
sualization and user interface for time-oriented, skeletal plans.Arti-
ficial Intelligence in Medicine, Special Issue on Information Visual-
ization in Medicine, 22(2):111–131, 2001.

[6] Mar Marcos, Geert Berger, Frank van Harmelen, Annette ten Teije,
Hugo Roomans, and Silvia Miksch. Using critiquing for improving
medical protocols: Harder than it seems. InProceedings of Euro-
pean Conference on Artificial Intelligence in Medicine (AIME 2001),
pages 431–441, Springer, Berlin, 2001.

[7] Silvia Miksch. Plan management in the medical domain.AI Com-
munications, 12(4):209–235, 1999.

[8] Silvia Miksch, Yuval Shahar, Werner Horn, Christian Popow, Franz
Paky, and Peter Johnson. Time-oriented skeletal plans: Support to
design and execution. InFourth European Conference on Planning
(ECP’97). Springer, September 24–26 1997.

[9] Silvia Miksch, Yuval Shahar, and Peter Johnson. Asbru: A task-
specific, intention-based, and time-oriented language for represent-
ing skeletal plans. InProceedings of the 7th Workshop on Knowledge
Engineering: Methods & Languages (KEML-97). Milton Keynes,
UK, Open University, 1997.

[10] Mark A. Musen, John H. Gennari, Henrik Eriksson, Samson W.
Tu, and Aangel R. Puerta. PROTÉGÉ-II: A computer support for
development of intelligent systems from libraries of components.
In Proceedings of the 8th World Congress on Medical Informatics
(MEDINFO-95), pages 766–770, 1995.

[11] Kristi-Anne Polvani, Abha Agrawal, Bryat Karras, Anirud-
dha Deshpande, and Richard Shiffman. Gem cutter.
http://ycmi.med.yale.edu/GEM/ .

[12] Protocure.http://www.protocure.org .
[13] Andreas Seyfang, Robert Kosara, and Silvia Miksch. Asbru’s ref-

erence manual, Asbru version 7.2. Technical Report Asgaard-
TR-2000-3, Vienna University of Technology, Institute of Software
Technology, 2000.

[14] Richard N. Shiffman, Bryan T. Karras, Abha Agrawal, Roland Chen,
Luis Marenco, and Sujai Nath. GEM: A proposal for a more com-
prehensive guideline document model using XML.Journal of the
American Medical Informatics Society (JAMIA), 7(5):488–498, Oc-
tober 2000.

[15] Vojtěch Sv́atek, Toḿǎs Kroupa, and Marek R̊užička. Guide-x – a
step-by-step, markup-based approach to guideline formalisation. In
Barbara Heller, Markus L̈offler, Mark Musen, and Mario Stefanelli,
editors,Computer-Based Support for Clinical Guidelines and Pro-
tocols, Proceedings of the First European Workshop on Computer-
Based Support for Clinical Guidelines and Protocols (EGWLP), vol-
ume 83 ofStudies in Health Technology and Informatics, pages 97–
114. IOS Press, 2000.

[16] The Appraisal of Guidelines, Research and Evaluation in Europe
(AGREE) Collaborative Group. Guideline development in europe –
an international comparison.International Journal of Technology
Assessment in Health Care, 16(4):1039–1049, 2000.

[17] XML Schema.http://www.w3.org/XML/Schema/ .


